cho \(ax^3=by^3=cz^3;\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). chứng minh \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(ax^3=by^3=cz^3=k\).
Khi đó ta có:
\(VT=\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\dfrac{k}{x}+\dfrac{k}{y}+\dfrac{k}{z}}=\sqrt[3]{k\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\sqrt[3]{k}\).
\(VP=\sqrt[3]{\dfrac{k}{x^3}}+\sqrt[3]{\dfrac{k}{y^3}}+\sqrt[3]{\dfrac{k}{z^3}}=\sqrt[3]{k}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\sqrt[3]{k}\).
Từ đó ta có đpcm.
Ta có: ax3 = \(\dfrac{ax^2}{\dfrac{1}{x}}\)
Tương tự ta có: ax3 = by3 = cz3
hay \(\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\) = ax2 + by2 + cz2 (T/c dãy tỉ số bằng nhau)
\(\Rightarrow\) \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)
= \(\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) (đpcm)
Chúc bn học tốt!
Gọi vế trái là T, vế phải là P, ta có:
\(T=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}=\sqrt[3]{\frac{ax^3}{x}+\frac{ax^3}{y}+\frac{qx^3}{z}}\)
\(T=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{T}{x}\)
Tương tự \(\sqrt[3]{b}=\frac{T}{y};\sqrt[3]{c}=\frac{T}{z}\)
Vậy\(P=T\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=T\)
ngữ văn ko phải toán ko giải dc với đây là toán lớp 6 nha
ĐẶT: T= \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{T}{x}\)
tuowng tự ta đc \(\sqrt[3]{b}=\frac{T}{y};\sqrt[3]{c}=\frac{T}{z}\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{T}{x}+\frac{T}{y}+\frac{T}{z}=T\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=T\left(dpcm\right)\)
Có: A= \(\sqrt[3]{ax^2+by^2+cz^2}\) = \(\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\) = \(\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
= \(\sqrt[3]{ax^3}\) = \(\sqrt[3]{a}x\) =>\(\sqrt[3]{a}\) =\(\frac{A}{x}\)
Tương tự : \(\sqrt[3]{b}=\frac{A}{y}\) , \(\sqrt[3]{c}=\frac{A}{z}\)
=> \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\frac{A}{x}+\frac{A}{y}+\frac{A}{z}\) = A \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) = A
hay \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\sqrt[3]{ax^2+by^2+cz^2}\)
Đặt \(Q=\sqrt[3]{ax^{2\:}+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\)
\(=\sqrt[3]{\frac{ax^3}{x}+\frac{ax^3}{y}+\frac{ax^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{ax^{3\:}}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{Q}{x}\)
Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b}=\frac{Q}{y}\\\sqrt[3]{c}=\frac{Q}{z}\end{cases}}\)
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{Q}{x}+\frac{Q}{y}+\frac{Q}{z}=Q\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=Q\)
Vậy....
Đẳng thức cần chứng minh tương đương với
\(ax^2+by^2+cz^2=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(ax^2+by^2+cz^2\right)\)
\(\ge\left(\sqrt[3]{\frac{1}{x}\cdot\frac{1}{x}\cdot ax^2}+\sqrt[3]{\frac{1}{y}\cdot\frac{1}{y}\cdot by^2}+\sqrt[3]{\frac{1}{z}\cdot\frac{1}{z}\cdot cz^2}\right)^3\)
\(=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=VP\)
Do \(ax^2=by^2=cz^2\) nên đẳng thức có xảy ra
Bài này hình như có lần làm rồi :))
Đặt `ax^3=by^3=cz^3=k^3`
`=>a=k^3/x^3,b=k^3/y^3,c=k^3/z^3`
`=>root{3}{a}+root{3}{b}+root{3}{c}=k/x+k/y+k/z=k(1/x+1/y+1/z)=k(1)`
`**:ax^2+by^2+cz^2=(ax^3)/x+(by^3)/y+(cz^3)/z=k^3/x+k^3/y+k^3/z=k^3(1/x+1/y+1/z)=k^3`
`=>root{3}{ax^2+by^2+cz^2}=k(2)`
`(1)(2)=>ĐPCM`