K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(\dfrac{x+2001}{5}+1\right)+\left(\dfrac{x+1999}{7}+1\right)+\left(\dfrac{x+1997}{9}+1\right)+\left(\dfrac{x+1995}{11}+1\right)=0\)

=>x+2006=0

=>x=-2006

b: \(\Leftrightarrow\left(\dfrac{x-15}{100}-1\right)+\left(\dfrac{x-10}{105}-1\right)+\left(\dfrac{x-100}{5}-1\right)=\left(\dfrac{x-100}{15}-1\right)+\left(\dfrac{x-105}{10}-1\right)+\left(\dfrac{x-110}{5}-1\right)\)

=>x-105=0

=>x=105

8 tháng 5 2022

2003 / 2001 = 1 + 2/2001

1999/1997 = 1 + 2/1997 

vì 2/ 2001 < 2/1997

nên 1 + 2/2001 < 1 + 2/1997

hay 2003 < 1999/1997

b, = 5/9 x 1/4 + 4/9 x 1/4 

= 1/4 x ( 5/9 + 4/9 )

= 1/4 x 1 

= 1/4

8 tháng 5 2022

* Ý a mk k nhớ cách làm ^^, xl * 

\(b,\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{3}{12}\)

\(=\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{1}{4}\)

\(=\dfrac{1}{4}\times\left(\dfrac{5}{9}+\dfrac{5}{9}\right)\)

\(=\dfrac{1}{4}\times\dfrac{9}{9}=\dfrac{1}{4}\times1=\dfrac{1}{4}\)

21 tháng 4 2017

Câu 1:

Tại \(x=5\) thì ta có pt:

\(pt\Leftrightarrow10+4m^2=19\)

\(\Leftrightarrow4m^2=9\Leftrightarrow m^2=\dfrac{9}{4}\)

\(\Leftrightarrow m=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\)

Vậy với \(m=\pm\dfrac{3}{2}\) thì pt có nghiệm là \(x=5\)

Câu 2:

\(\dfrac{x+5}{1999}+\dfrac{x+7}{1997}=\dfrac{x+9}{1995}+\dfrac{x+11}{1993}\)

\(\Leftrightarrow\dfrac{x+5}{1999}+1+\dfrac{x+7}{1997}+1=\dfrac{x+9}{1995}+1+\dfrac{x+11}{1993}+1\)

\(\Leftrightarrow\dfrac{x+2004}{1999}+\dfrac{x+2004}{1997}=\dfrac{x+2004}{1995}+\dfrac{x+2004}{1993}\)

\(\Leftrightarrow\dfrac{x+2004}{1999}+\dfrac{x+2004}{1997}-\dfrac{x+2004}{1995}-\dfrac{x+2004}{1993}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{1999}+\dfrac{1}{1997}-\dfrac{1}{1995}-\dfrac{1}{1993}\right)=0\)

\(\Rightarrow x+2004=0\). Do \(\dfrac{1}{1999}+\dfrac{1}{1997}-\dfrac{1}{1995}-\dfrac{1}{1993}\ne0\)

\(\Rightarrow x=-2014\)

11 tháng 3 2023

`(x-2003)/16 +(x-1997)/11 +(x-1992)/9 +(x-1991)/7=10`

`<=>((x-2003)/16-1)+((x-1997)/11-2)+((x-1992)/9-3)+((x-1991)/7-4)=0`

`<=>(x-2019)/16+ (x-2019)/11 +(x-2019)/9+(x-2019)/7 =0`

`<=> (x-2019)(1/16+1/11+1/9+1/7)=0`

<=> x-2019=0`

`<=> x=2019`

11 tháng 3 2023

a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)

\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)

\(\Leftrightarrow-24x+144=-5x+30\)

\(\Leftrightarrow-24x+5x=30-144\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: S={6}

b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)

\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)

\(\Leftrightarrow2-10x=-12x+12\)

\(\Leftrightarrow2-10x+12x-12=0\)

\(\Leftrightarrow2x-10=0\)

\(\Leftrightarrow2x=10\)

hay x=5

Vậy: S={5}

c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow6-2x-8=5x+10\)

\(\Leftrightarrow-2x+2-5x-10=0\)

\(\Leftrightarrow-7x-8=0\)

\(\Leftrightarrow-7x=8\)

hay \(x=-\dfrac{8}{7}\)

Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)

d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)

\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)

\(\Leftrightarrow35-15x-2x-10-10=0\)

\(\Leftrightarrow-17x+15=0\)

\(\Leftrightarrow-17x=-15\)

hay \(x=\dfrac{15}{17}\)

Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)

1 tháng 2 2021

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) ĐKXĐ: x≠-5

Ta có: \(\dfrac{2x-5}{x+5}=4\)

\(\Leftrightarrow2x-5=4\left(x+5\right)\)

\(\Leftrightarrow2x-5=4x+20\)

\(\Leftrightarrow2x-5-4x-20=0\)

\(\Leftrightarrow-2x-25=0\)

\(\Leftrightarrow-2x=25\)

hay \(x=\dfrac{-25}{2}\)(nhận)

Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)

b) ĐKXĐ: x≠0

Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-8=2x^2+3x\)

\(\Leftrightarrow2x^2-8-2x^2-3x=0\)

\(\Leftrightarrow-3x-8=0\)

\(\Leftrightarrow-3x=8\)

hay \(x=\dfrac{-8}{3}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)

\(\Leftrightarrow20x+12=0\)

\(\Leftrightarrow20x=-12\)

hay \(x=-\dfrac{3}{5}\)(nhận)

Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)

d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)

\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

a: =>-3x=-12

=>x=4

b: =>3(3x+2)-3x-1=12x+10

=>9x+6-3x-1=12x+10

=>12x+10=6x+5

=>6x=-5

=>x=-5/6

c: =>x(x+1)+x(x-3)=4x

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=3(loại) hoặc x=0(nhận)

13 tháng 3 2023

loading...  loading...  

14 tháng 1 2021

a) ĐKXD: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)

\(\Leftrightarrow-2+x=-3\left(x-2\right)\)

\(\Leftrightarrow-2+x=-3x+6\)

\(\Leftrightarrow x+3x=6+2\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)

Vậy S = ∅

b) ĐKXĐ: x ≠ 7

 \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)

\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)

\(\Leftrightarrow-1=8\left(vô-lý\right)\)

Vậy S = ∅ 

P/s: Ko chắc ạ! 

14 tháng 1 2021

c) ĐKXĐ: x ≠ 1

\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)

Quy đồng và khử mẫu ta được:

\(x^2+x+1+2x\left(x-1\right)=3x^2\)

\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)

\(\Leftrightarrow-x+1=0\)

\(\Leftrightarrow x=1\) (loại vì ko t/m đk)

Vậy S = ∅

 

28 tháng 4 2022

a, 4x+1=13-2x <-->6x=12 <-->x=2

b, (2x-5)(x-4)=0 <-->x=5/2  hoặc x=4

c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0  hoặc x=-2

d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4           TH2:3-x=9-2x -->x=6