\(\text{Câu 1: Cho các số A và B. Hãy tính tỉ số }\)\(\dfrac{A}{B}\) \(biết:\)
\(a\)) \(A=\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57};\)
\(B=\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)
\(b\)) \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021};\)
\(B=\dfrac{2020}{1}+\dfrac{2019}{2}+\dfrac{2018}{3}+...+\dfrac{1}{2020}\)
a) Ta có: \(A=\dfrac{4}{7\cdot31}+\dfrac{6}{7\cdot41}+\dfrac{9}{10\cdot41}+\dfrac{7}{10\cdot57}\)
\(=\dfrac{20}{31\cdot35}+\dfrac{30}{35\cdot41}+\dfrac{45}{41\cdot50}+\dfrac{35}{50\cdot57}\)
\(=5\left(\dfrac{4}{31\cdot35}+\dfrac{6}{35\cdot41}+\dfrac{9}{41\cdot50}+\dfrac{7}{50\cdot57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{35}+\dfrac{1}{35}-\dfrac{1}{41}+\dfrac{1}{41}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Ta có: \(B=\dfrac{7}{19\cdot31}+\dfrac{5}{19\cdot43}+\dfrac{3}{23\cdot43}+\dfrac{11}{23\cdot57}\)
\(=\dfrac{14}{31\cdot38}+\dfrac{10}{38\cdot43}+\dfrac{6}{43\cdot46}+\dfrac{22}{46\cdot57}\)
\(=2\left(\dfrac{7}{31\cdot38}+\dfrac{5}{38\cdot43}+\dfrac{3}{43\cdot46}+\dfrac{11}{46\cdot57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{38}+\dfrac{1}{38}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Suy ra: \(\dfrac{A}{B}=\dfrac{5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}{2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}=\dfrac{5}{2}\)