K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

Ta có:

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}.\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)\(x.y=300.\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow\left\{{}\begin{matrix}x=15k\\y=20k\\z=24k\end{matrix}\right.\)

Lại có: \(x.y=300\)

\(\Rightarrow15k.20k=300\)

\(\Rightarrow300.k^2=300\)

\(\Rightarrow k^2=300:300\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k^2=\left(\pm1\right)^2\)

\(\Rightarrow k=\pm1.\)

+ TH1: \(k=1.\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.1=15\\y=20.1=20\\z=24.1=24\end{matrix}\right.\)

+ TH2: \(k=-1.\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-1\right)=-15\\y=20.\left(-1\right)=-20\\z=24.\left(-1\right)=-24\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(15;20;24\right),\left(-15;-20;-24\right).\)

Chúc bạn học tốt!

30 tháng 1 2020

Không có gì. vui

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

8 tháng 7 2017

Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)

Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

    \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2

Do đó:\(x=2.8=16\)

          \(y=12.2=24\)

          \(z=15.2=30\)

   Vậy \(x=16\);\(y=24\);\(z=30\)

Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)

         \(\Rightarrow\)\(x=2.k\);\(y=5.k\)

\(x.y=10\)nên \(2k.5k=10\)

                         \(\Rightarrow\)\(10.k^2=10\)

                         \(\Rightarrow\)\(k^2=1\)

                        \(\Rightarrow\)\(k=1\)hoặc\(k=-1\)

 +) Với \(k=1\)thì \(x=2\);\(y=5\)

 +) Với \(k=-1\)thì \(x=-2\);\(y=-5\)

           Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)

8 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và  \(xy=10\)

Ta có : 

\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được : 

\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)

Với  \(y=5\Rightarrow x=\frac{2.5}{5}=2\)

Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

30 tháng 11 2015

x/3 = y/4 ; y/3 = z/5

=>x/9=y/12;y/12=z/20

=>x/9=y/12=z/20

=>2x/18=3y/36=z/20

áp dụng tính chất của dãy tỉ số = nhau ta có:

2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3

suy ra 

2x/18=3=>2x=54=>x=27

3y/36=3=>3y=108=>y=36

z/20=3=>z=60

tick nhé

10 tháng 12 2018

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{z+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{y+z+z+x+x+y+1+2-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\frac{y+z+1}{x}=2\)

\(\Rightarrow y+z+1=2x\)

\(x+y+z+1=3x\Rightarrow\frac{3}{2}=3x\)

Tương tự với mấy cái khác bạn tính được x,y,z

10 tháng 12 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)

\(\Rightarrow\frac{1}{x+y+z}=\frac{2x+2y+2z}{x+y+z}\)

\(\Rightarrow1=2\left(x+y+z\right)\)

\(\Rightarrow x+y+z=\frac{1}{2}\left(1\right)\)

Thay vào đề đc :

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{\frac{1}{2}}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(2\right)\\z+x+2=2y\left(3\right)\\x+y-3=2z\left(4\right)\end{cases}}\)

Từ (2) => x + y + z + 1 = 3x

Thay (1) vào đc  \(\frac{1}{2}+1=3x\)

                   \(\Leftrightarrow3x=\frac{3}{2}\)

                  \(\Leftrightarrow x=\frac{1}{2}\)

Từ (3) => x + y + z + 2 =  3y

Thay (1) vào đc \(\frac{1}{2}+2=3y\)

                \(\Leftrightarrow y=\frac{5}{6}\)

Khi đó \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

22 tháng 5 2017

\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{62}=3\)

Suy ra:     \(\frac{x}{15}=3\Rightarrow x=3.15=45\)

\(\frac{y}{20}=3\Rightarrow y=3.20=60\)

\(\frac{z}{28}=3\Rightarrow z=3.28=84\)

Vậy x=45, y=60, z=84

29 tháng 6 2021

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ...

29 tháng 6 2021

*Cách khác:

Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}=\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

\(\Rightarrow x=18;y=16;z=15\)

26 tháng 9 2017

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{5}=2\Rightarrow z=10\)

30 tháng 9 2017

k minh nha

16 tháng 7 2016

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

16 tháng 7 2016

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30