Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\frac{101.102}{2}}{51}\)
\(=101\)
bạn mình bị ung thư giai đoạn cuối các bạn giúp mình bằng cách một cái để cho bạn mình thêm 1 hi vọng sống cả cô chú trong ban kiểm duyệt của olm thân yêu nữa nhé
\(\frac{101+100+...+3+2+1}{101+100+...+3+2+1}=1\) NHA
\(A=\frac{101+100+99+...+3+2+1}{101+100+99+...+3+2+1}\)
Ta thấy vì cả tử số và mẫu số của \(A\) đều giống nhau nên => \(A=1\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Chứng minh rằng:
\(S_1=2+2^2+2^3+2^4+...+2^{99}+2^{100}\text{ }chia\text{ }hết\text{ }cho\text{ }31\)
\(S=2+2^2+2^3+...+2^{100}\)
lập \(2S=2\left(2+2^2+2^3+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
ta lấy \(2S-S\)
\(2S-S\) \(=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(S=2^{101}-\left(1+2\right)\)
vì S là số lẻ và có 31:31
\(\Rightarrow\) \(S_1:31\)
Olm chào em đề bài bị lỗi công thức rồi, em nhé. Em vui lòng cập nhật lại đề bài. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.
rõ ràng phép tính đk ?