Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
a)trời, nó dễ đến hiển nhiên luôn ý
x. số j ko cần biết mà = 0
thì 1 trong hai x hoặc căn x-2 sẽ là 0
căn mà ra 0 thì chỉ có căn 0 thôi
x-2=0 => x=2
hoặc x = 0
Từ đó:
2. căn 2-2 = 0
2. 0 = 0
b)cái này y chang cái trên, 1 trong 2 là 0
x căn để đc 0 thì chỉ có 0
còn x mũ 2 trừ 4 để bằng 0 thì x mũ 2 chỉ có 4
x mũ 2 = 4
x = 2
Đáp án: 2 hoặc 0
c) x phần x mà để đc bằng nhau thì |x| = x
đáp án: ∞
a) Sửa đề: -(x-1)2+3
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: Giá trị lớn nhất của biểu thức -(x-1)2+3 là 3 khi x=1
b) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow-x^2\le0\forall x\)
\(\Rightarrow-x^2+1\le1\forall x\)
Dấu '=' xảy ra khi \(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(1-x^2\) là 1 khi x=0
a) \(\sqrt{x}=4=>x=16\)
b) \(\left(x+1\right)^2=1=>x+1=\sqrt{1}=1\)
\(x+1=1=>x=0\)
c) \(\sqrt{x+1}=5=>x+1=25\)
a. \(\dfrac{3}{4}-\left(2x-\dfrac{2}{3}\right)=\dfrac{-5}{6}\)
\(\Rightarrow2x-\dfrac{2}{3}=\dfrac{3}{4}-\dfrac{-5}{6}\)
\(\Rightarrow2x-\dfrac{2}{3}=\dfrac{19}{12}\)
\(\Rightarrow2x=\dfrac{19}{12}+\dfrac{2}{3}=\dfrac{9}{4}\)
\(\Rightarrow x=\dfrac{9}{4}:2=\dfrac{9}{8}\)
Vậy............
b. \(1,5-\left(x+\dfrac{7}{2}\right)=2^7:2^5\)
\(\Rightarrow1,5-\left(x+\dfrac{7}{2}\right)=2^2=4\)
\(\Rightarrow x+\dfrac{7}{2}=1,5-4=\dfrac{-5}{2}\)
\(\Rightarrow x=\dfrac{-5}{2}-\dfrac{7}{2}=-6\)
Vậy.............
a) \(\sqrt{x}=2\)
\(\Rightarrow x=2^2=4\)
b) \(\sqrt{x-1-5}=\sqrt{x-6}=0\)
\(\Rightarrow x-6=0^2=0\)
\(\Rightarrow x=6\)
các câu sau tương tự
Câu 1/
\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)
Lấy (1).(2) vế theo vế được
\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)
\(\Leftrightarrow x+y-\left(x-y\right)=2\)
\(\Leftrightarrow2y=2\)
\(\Leftrightarrow y=1\)
Thế vô tìm được x.
Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.
ông học trường nào lớp mấy vậy