Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.
Câu 1: Mình làm mẫu câu a thôi nhé.
a/ \(x^2-2\sqrt{3}x-6=0\)
( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )
\(\Delta=b^2-4ac\)
\(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)
Vậy:..
Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)
( a = 1; b = -2(2m+1); c = 4m^2 + 2 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)
\(=4\left(4m^2+4m+1\right)-16m^2-8\)
\(=16m^2+16m+4-16m^2-8\)
\(=16m-4\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)
a) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3
∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5
x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)
b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5
∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm
c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5
∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11
x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =
d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2
∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1
X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)
e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16
∆ = (-8)2 – 4 . 1. 16 = 0
y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4
f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9
∆ = 242 – 4 . 16 . 9 = 0
z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)
a) \(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-25=0\left(1\right)\\2x^2-7x-9=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\)
\(\left(2\right)\Leftrightarrow2x^2-9x+2x-9=0\)
\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{9}{2}\end{matrix}\right.\)
Vậy....
b) \(\left(2x^2-3\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3-2x+2\right)\left(2x^2-3+2x-2\right)=0\)
\(\Leftrightarrow\left(2x^2-2x-1\right)\left(2x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x-1=0\left(3\right)\\2x^2+2x-5=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\Delta=2^2-4\cdot2\cdot\left(-1\right)=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}\\x=\frac{2+\sqrt{12}}{4}=\frac{1+\sqrt{3}}{2}\end{matrix}\right.\)
\(\left(4\right)\Delta=2^2-4\cdot2\cdot\left(-5\right)=44\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2-\sqrt{44}}{4}=\frac{-1-\sqrt{11}}{2}\\x=\frac{-2+\sqrt{44}}{4}=\frac{-1+\sqrt{11}}{2}\end{matrix}\right.\)
Vậy...
c) \(x^3+5x^2+7x+3=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Vậy...
d) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-2x^2-4x^2+8x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)
Vậy...
a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2
=> 5x^2 = 5 hoặc 5x^2 = 1
b) pt <=> l(x-1)^2l = x + 2
VÌ ( x - 1 )^2 >= 0 => l( x - 1 )^2 l = ( x- 1 )^2
pt <=> x^2 - 2x + 1 = x + 2 <=>
x^2 - 3x - 1 = 0
c) l2x-5l - l2x^2 - 7x + 5 l = 0
<=> l2x-5l - l ( 2x-5)(x-1) l = 0
<=> l2x-5l ( 1 - l x - 1 l = 0
<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0
d); e lập bảng xét dấu sau đó xét ba trường hợ p ra
Câu c;d giải \(\Delta\)
Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự
a/ \(x^4-2x^2-8=0\left(1\right)\)
Đặt: \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow t^2-2t-8=0\)
( a = 1; b = -2; c = -8 )
\(\Delta=b^2-4ac\)
\(=\left(-2\right)^2-4.1.\left(-8\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)
\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)
Vậy: S = {-2;2}
a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)
b. \(\Leftrightarrow x^3+x+3x^2+3=0\)
\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)
d.
\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)
e.
\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)
Câu 1:
a: \(x^2+7x=0\)
=>x(x+7)=0
=>\(\left[{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
b: \(\left(3x+2\right)^2-4x^2=0\)
=>\(\left(3x+2+2x\right)\left(3x+2-2x\right)=0\)
=>(x+2)(5x+2)=0
=>\(\left[{}\begin{matrix}x+2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{2}{5}\end{matrix}\right.\)
c: \(2x\left(x+6\right)+5\left(x+6\right)=0\)
=>(x+6)(2x+5)=0
=>\(\left[{}\begin{matrix}x+6=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
d: \(x\left(3x+5\right)-6x-10=0\)
=>x(3x+5)-2(3x+5)=0
=>(3x+5)(x-2)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=2\end{matrix}\right.\)
Câu 2:
a: \(\left(2x-3\right)^2=\left(x+7\right)^2\)
=>\(\left(2x-3\right)^2-\left(x+7\right)^2=0\)
=>(2x-3-x-7)(2x-3+x+7)=0
=>(x-10)(3x+4)=0
=>\(\left[{}\begin{matrix}x-10=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: \(x^2-9=3\left(x+3\right)\)
=>\(\left(x-3\right)\left(x+3\right)-3\left(x+3\right)=0\)
=>(x+3)(x-6)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
c: \(x^2-x=-2x+2\)
=>\(x\left(x-1\right)=-2\left(x-1\right)\)
=>(x-1)(x+2)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
d: \(x^2-3x=2x-6\)
=>\(x\left(x-3\right)=2\left(x-3\right)\)
=>(x-3)(x-2)=0
=>\(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Câu 3:
b: \(-2x^2+5x+3=0\)
=>\(-2x^2+6x-x+3=0\)
=>-2x(x-3)-(x-3)=0
=>(x-3)(-2x-1)=0
=>(x-3)(2x+1)=0
=>\(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c: \(x^3+2x-3=0\)
=>\(x^3-x+3x-3=0\)
=>\(x\left(x^2-1\right)+3\left(x-1\right)=0\)
=>\(x\left(x-1\right)\left(x+1\right)+3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
nên x-1=0
=>x=1
d: \(x^3+8=x^2-4\)
=>\(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\left(x-2\right)=0\)
=>\(\left(x+2\right)\left(x^2-2x+4-x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2-3x+6\right)=0\)
mà \(x^2-3x+6=x^2-3x+\dfrac{9}{4}+\dfrac{15}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall x\)
nên x+2=0
=>x=-2
Oguo