Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a) \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x+2010=0\) ( vì 1/2003 + 1/2006 -- 1/2011 -- 1/2015 \(\ne\)0)
\(\Leftrightarrow x=-2010\)
câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<
x - 2x + 22x - 23x + 24x -.....+ 22006x - 22007x = 22008 - 1
x(1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007) = 22008 - 1
Đặt M = 1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007
2M = 2 - 22 + 23 - 24 + 25 -....+ 22007 - 22008
3M = 2M + M = 1 - 22008
=> M = \(\frac{1-2^{2008}}{3}\)
=> x . \(\frac{1-2^{2008}}{3}\) = 22008 - 1
=> x = (22008 - 1)\(\frac{1-2^{2008}}{3}\)
Đến đây chịu
a) \(\dfrac{-7}{12}-\left(\dfrac{3}{5}+x\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-7}{12}-\dfrac{3}{5}-x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-71}{60}-x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-71}{60}-\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-29}{15}\)
Vậy \(x=\dfrac{-29}{15}\)
b) \(2017x\left(x-\dfrac{2006}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017x=0\\x-\dfrac{2006}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2006}{7}\end{matrix}\right.\)
Vậy \(x=0\) ; \(x=\dfrac{2006}{7}\)
c) \(5\left(x-2\right)+3x\left(2-x\right)=0\)
\(\Leftrightarrow5\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x=2\) ; \(x=\dfrac{5}{3}\)
a) \(\orbr{x=0}\)
btvn mà lên mạng thế