Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
(1 - 2)2 + (3 - 4)3 + (4 - 5)4 + ... + (99 - 100)99
= (-1)2 + (-1)3 + (-1)4 + ... + (-1)99
= 1 + (-1) + 1 + ... + (-1)
= (1 - 1) + (1 - 1) + ... + (1 - 1)
= 0
\(\dfrac{1}{3}+1+\dfrac{5}{3}+\dfrac{7}{3}+...+\dfrac{99}{3}\\ =\dfrac{1}{3}+\dfrac{3}{3}+\dfrac{5}{3}+\dfrac{7}{3}+...+\dfrac{99}{3}\\ =\dfrac{1+3+5+...+99}{3}\)
Số lượng số hạng: (99 - 1) : 2 + 1 = 50 (số hạng)
Tổng: (99 + 1) x 50 : 2 = 2500
\(\dfrac{1}{3}+1+\dfrac{5}{3}+..+\dfrac{99}{3}=\dfrac{2500}{3}\)
_______________________________
\(\dfrac{1}{2}+1+\dfrac{3}{2}+2+\dfrac{5}{2}+...+100+\dfrac{201}{2}\\ =\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{200}{2}+\dfrac{201}{2}\\ =\dfrac{1+2+3+...+201}{2}\)
số lượng số hạng là: (201 - 1) : 1 + 1 = 201
Tổng: (201 + 1) x 201 : 2 = 20301
\(\dfrac{1}{2}+1+\dfrac{3}{2}+2+\dfrac{5}{2}+..+100+\dfrac{201}{2}=\dfrac{20301}{2}\)
=100/3