K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7

  Trong TH này, có thể bạn đã sai đề =)))

 

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

27 tháng 10 2016

1)1

2)3

27 tháng 10 2016

du 2 va 3

\(P=\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\dfrac{\left(3^{2016}-6^{2016}\right)+\left(9^{2016}-12^{2016}\right)+\left(15^{2016}-18^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\dfrac{3^{2016}\left(1-2^{2016}\right)+3^{2016}\left(3^{2016}-4^{2016}\right)+3^{2016}\left(5^{2016}-6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\dfrac{3^{2016}\left(1-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}{-\left(1^{2016}-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}\)

\(=-3^{2016}\).

Vậy \(P=-3^{2016}\)

2 tháng 9 2017

\(P=\frac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\frac{\left(1.3\right)^{2016}-\left(2.3\right)^{2016}+\left(3.3\right)^{2016}-\left(4.3\right)^{2016}+\left(5.3\right)^{2016}-\left(6.3\right)^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\frac{1^{2016}.3^{2016}-2^{2016}.3^{2016}+3^{2016}.3^{2016}-4^{2016}.3^{2016}+5^{2016}.3^{2016}-6^{2016}.3^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=\frac{-3^{2016}\left(-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)

\(=-3^{2016}\)

29 tháng 1 2020

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)

Vậy B = - 2016

Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?

14 tháng 8 2016

a)\(=\frac{2017}{2016}.\frac{3}{4}-\frac{1}{2016}.\frac{3}{4}\)

\(=\frac{3}{4}\left(\frac{2017}{2016}-\frac{1}{2016}\right)\)

\(=\frac{3}{4}.1\)

\(=\frac{3}{4}\)

b)\(=\frac{2015}{2016}\left(\frac{1}{2}+\frac{1}{3}-\frac{5}{6}\right)\)

\(=\frac{2015}{2016}.0\)

\(=0\)