Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1619 và 825
Ta có :
1619 = ( 24 )19 = 276
825 = ( 23 )25 = 275
Vì 276 > 275 Nên 1619 > 825
b) 536 và 1124
Ta có :
536 = ( 53 )12 = 12512
1124 = ( 112 )12 = 12112
Vì 12512 > 12112 Nên 536 > 1124
1.
\(M=3^0+3^1+......+3^{50}.\)
\(\Rightarrow3M=3+3^2+.......+3^{51}\)
\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)
\(\Rightarrow2M=3^{51}-1\)
\(\Rightarrow M=\frac{3^{51}-1}{2}\)
2.
\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^5=2^{75}\)
Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)
\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
a) vì 10>9 ; 20>10 nên
1020>910
b)
(-5)30=530=(53)10=12510
(-3)50=350=(35)10=24310
vì 125<243 nên 12510<24310
hay (-5)30<(-3)50
c)
648=(43)8=424
1612=(42)12=424
Vậy 648=162(=424)
d)
\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
vì 40<50 nên \(\left(\frac{1}{2}\right)^{40}
a) \(10^{30}=2^{30}.5^{30}=2^{30}.\left(5^3\right)^{10}=2^{30}.125^{10}\)
\(2^{100}=2^{30}.2^{70}=2^{30}.\left(2^7\right)^{10}=2^{30}.128^{10}\)
mà \(125^{10}< 128^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) \(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(5^{40}>620^{10}\)
c) \(8^{25}=\left(2^3\right)^{75}=2^{75}\)
\(16^{19}=\left(2^4\right)^{19}=2^{76}>2^{75}\)
\(\Rightarrow16^{19}>8^{25}\)
a,1030 và 2100
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410 nên 1030<2100.
b,540 và 62010
540=(54)10=62510>62010
=>540>62010.
c,825 và 1619
Nhân 825 và 1619 với 4 , ta được
3225 và 6419
3225=(325)5=335544325
6419<6420=(644)5=167772165
Vì 335544325>167772165 nên 825>1619
a, Ta có: 5^30 = (5^3)^10= 125^ 10 > (-10^2)^10= 100^10
b, ta có: 21^12= ( 21^3)^4 > 54^4
c, Ta có: (1/16)^10 = 1/16^10
(1/2)^50= 1/2^50
Lại có: 16^10=(2^4)^10= 2^40 < 2^50 nên (1/6)^10> (1/2)^50
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)
a, Ta có : 648 = (43)8 = 424
1612 = (42)12 = 424
Vì 424 = 424 => 648 = 1612
Câu 3:
a) \(\dfrac{12}{36}=\dfrac{12:12}{36:12}=\dfrac{1}{3}\)
\(\dfrac{-16}{20}=\dfrac{-16:4}{20:4}=\dfrac{-4}{5}\)
b) \(\dfrac{21}{105}=\dfrac{21:21}{105:21}=\dfrac{1}{5}\)
\(\dfrac{35}{150}=\dfrac{35:5}{150:5}=\dfrac{7}{30}\)
Câu 4:
a) \(\dfrac{3}{10}+\dfrac{5}{10}=\dfrac{3+5}{10}=\dfrac{8}{10}=\dfrac{4}{5}\)
b) Ta có: \(\left(-27\right)\cdot36+64\cdot\left(-27\right)+23\cdot\left(-100\right)\)
\(=\left(-27\right)\cdot\left(64+36\right)+23\cdot\left(-100\right)\)
\(=-27\cdot100-23\cdot100\)
\(=100\left(-27-23\right)\)
\(=-50\cdot100=-5000\)
c) \(\dfrac{5}{8}+\dfrac{3}{12}=\dfrac{15}{24}+\dfrac{6}{24}=\dfrac{21}{24}=\dfrac{7}{8}\)
d) Ta có: \(\dfrac{-2}{17}+\dfrac{3}{19}+\dfrac{-15}{17}+\dfrac{16}{19}+\dfrac{5}{6}\)
\(=\left(-\dfrac{2}{17}+\dfrac{-15}{17}\right)+\left(\dfrac{3}{19}+\dfrac{16}{19}\right)+\dfrac{5}{6}\)
\(=-1+1+\dfrac{5}{6}\)
\(=\dfrac{5}{6}\)
a) \(49^{12}\)và \(5^{40}\)
\(49^{12}=\left(49^3\right)^4=\left(\left(7^2\right)^3\right)^4=\left(7^6\right)^4\)
\(5^{40}=\left(5^{10}\right)^4\)
\(7^6=\left(7^3\right)^2>\left(5^5\right)^2\)vì \(7^2\cdot7>5^3\cdot5^2\)
\(\Rightarrow49^{12}< 5^{40}\)
\(\left(-\frac{1}{16}\right)^{100}=\left(-\left(\frac{-1}{2}\right)^4\right)^{100}\)
\(=\left(-\frac{1}{2}\right)^{400}< \left(-\frac{1}{2}\right)^{500}\)
a) Ta có:
\(64^8=\left(2^6\right)^8=2^{6\cdot8}=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{4\cdot12}=2^{48}\)
\(\Rightarrow64^8=16^{12}\)
b) Ta có:
\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{4\cdot10}=\left(\dfrac{1}{2}\right)^{40}\)
Mà: 50 > 40 => `(1/2)^50<(1/2)^40`
c) Ta có:
\(\left(\dfrac{9}{16}\right)^{100}=\left[\left(\dfrac{3}{4}\right)^2\right]^{100}=\left(\dfrac{3}{4}\right)^{200}\)
Mà: `3/4>2/3=>(3/4)^200>(2/3)^200`
\(^{^{ }}\)a,64^8=16^12
b,(1/16)^10<(1/2)^50
c,(2/3)^200>(9/16)^100
CỦA BẠN ĐÂY NẾU SAI THÌ CHO MÌNH XIN LỖI NHÉ