Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
Giải
a. Xét ΔHBA và ΔABC có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ΔHBA ∼ ΔABC (g.g)
b. Xét ΔABC vuông tại A có:
\(BC^2=AB^2+AC^2\)(định lí py-ta-go)
\(=5^2+12^2\)
\(=169\)
\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)
Vì ΔABC ∼ ΔHBA (cmt)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)
⇒\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)
⇒\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta HBA\sim\Delta ABC\) (g.g)
b) Áp dụng định lí Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
Do \(\Delta HBA\sim\Delta ABC\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=6,8\left(cm\right)\)
Mặt khác ta cũng có \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
Suy ra: BH=1,8cm; AH=2,4cm
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=8\cdot12=96\left(cm^2\right)\)
ΔHBA đồng dạng ΔABC
=>\(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)
=>\(S_{HBA}=96\cdot\dfrac{9}{25}=34.56\left(cm^2\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
a) xét tam giác ABC và tam giác HBA, có
góc B chung
góc BAC = góc AHB (=90o)
=> tg ABC ~ tg HBA (g-g)
=>AB/BC =HB/AB ( tỉ số đồng dạng)
b) xét tg ABC có
BC2 = AB2 +AC2 ( định lí Pythagore)
BC^2 = 9^2 + 12^2
BC^2 = 81 + 144
BC = căn 225
=>BC = 15 cm
diện tích tg ABC là
S = AB.AC = (9.12):2 = 54 cm2
chiều dài AH là
AH = (S : BC).2= 9 cm
c) có: AB/BC =HB/AB(cmt)
=> AB2=HB.BC (đpcm)
cho mình xin ý kiến nhá :333