Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(n^4-4n^3-4n^2+16n=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n^3-4n\right)\left(n-4\right)=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)
th1: \(n=6\) ta có : \(n\left(n+2\right)\left(n-2\right)\left(n-4\right)=384⋮384\)
th2: giả sử \(n=2k\) với \(\left(k\in Z\backslash k>2\right)\)
thì ta có : \(2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)⋮384\)
vậy ta có khi \(n=2k+2\)
khi đó : \(n\left(n-2\right)\left(n+2\right)\left(n-4\right)=\left(2k+2\right)\left(2k\right)\left(2k+4\right)\left(2k-2\right)\)
tiếp đến là bn sử dụng phương pháp trên để chứng minh \(8\left(2k+2\right)\left(2k\right)\left(2k-2\right)⋮384\)
\(\Rightarrow\left(đpcm\right)\)
A\(=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)
\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)
\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)
\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)
Ta có: tích 4 số chắn liên tiếp chia hết cho 384
=> đpcm
n chẵn => n=2k
\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)
Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24
\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)
Bài giải
\(b,\text{ }14^{23}+23^{23}+76^{23}\)
\(=14^{22}\cdot14+23^{20}\cdot23^3+76^{23}\)
\(=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+76^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy chữ số tận cùng của \(8^{4n+1}\) là 8
\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
\(4^n\times2^3=384\\ \Leftrightarrow4^n=384:2^3\\ \Leftrightarrow4^n=48\)
Bạn kiểm tra lại đề nha.
sai đề thì phải