Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL ;
A = { x E N / 0 ;1 ; 2 ; 3 ; 4 ; 5 }
B = { x E N / 0 ; 1 ; 2 ; 3 }
C = { x E N / 0 ; 1 }
D = { x E N / 0 ; x ; y }
Chúc bạn học tốt nhé !
Gọi 2k và 2k+2 là 2 số chẵn liên liếp, ta có
2k.(2k+2)=4k^2+4k=4k(k+1)
Ta có k(k+1) luôn luôn chia hết cho 2
=> 4. k.(k+1) chia hết cho 2.4=8
Vậy 4k(k+1)chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8
hok tốt nha
Gọi số chẵn thứ nhất là 2k ( k ∈ Z )
=> Số chẵn còn lại : 2k + 2
=> Ta có tích của hai số : 2k(2k + 2 )
= 2k.2k + 2k.2
= 4k2 + 4k
= 4k ( k + 1 )
k ∈ Z khi chia cho 2 luôn có hai số dư là 0 và 1
=> k ∈ { 2n ; 2n + 1 } ( n ∈ Z )
Nếu k = 2n
=> 4k ( k + 1 ) = 4.2n ( 2n + 1 )
= 8n ( 2n + 1 ) ⋮ 8
Nếu k = 2n + 1
=> 4k ( k + 1 ) = 4( 2n + 1 ) [ ( 2n + 1 ) + 1 ]
= 4 ( 2n + 1 ) ( 2n + 2 )
= 8 ( 2n + 1 ) ( n + 1 ) ⋮ 8
\(\Rightarrow4k\left(k+1\right)⋮8\forall k\in Z\)
Vậy tích của hai số chẵn liên tiếp chia hết cho 8 ( đpcm ).
scjb
l
lbjsc
jlb jkscd
l D
kc K
đsdCBU
osdob
jvjob
sadvkj
bsd
jkbvdsl
kn
kjbsđ jbo
jkb bjk
ưởqvbuob
khr
wibuvibu
dhoidwhouvwouhdvbiowdobvvudsukhc
owdo
hfdauovoibadPhuo
Ví dụ 1: Cách 1:\(D=\left\{0;1;2;3;4;5;6;7\right\}\)
Cách 2: \(D=\left\{x\inℕ|x< 8\right\}\)
Ví dụ 2: A = {Đ, A, N, Ă, G}
Ví dụ 3: Cách 1: \(B=\left\{10;11;12;13;14\right\}\)
Cách 2: \(B=\left\{x\inℕ|9< x< 15\right\}\)
Ví dụ 5: Cách 1: \(B=\left\{0;1;2;3;4;5\right\}\)
Cách 2: \(B=\left\{x\inℕ|x\le5\right\}\)
Ví dụ 6: Cách 1: \(C=\left\{7;8;9;10\right\}\)
Cách 2: \(C=\left\{x\inℕ|6< x\le10\right\}\)
hai số chẵn liên tiếp là
số bé là
(64:2)-2=30
số lớn là
64 - 30=34
đáp số : 30
34
Số bé là: ( 64 : 2 ) - 2 = 30
số lớn là: 60 - 30 = 34
có ai tặng coin cho tui ko cho xin ít! hi hi