Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ nhất có dạng 5k1 + r. ( k1 \(\in\)N )
Số thứ hai có dạng 5k2 + r ( k2 \(\in\)N )
Hiệu 2 số là:
( 5k1 + r ) - ( 5k2 + r ) = 5 ( k1 - k2 ) chia hết cho 5. ( Giả sử k1\(\ge\)k2 ).
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
Số thứ nhất có dạng 5k1 + r. ( k1 ∈∈N )
Số thứ hai có dạng 5k2 + r ( k2 ∈∈N )
Hiệu 2 số là:
( 5k1 + r ) - ( 5k2 + r ) = 5 ( k1 - k2 ) chia hết cho 5. ( Giả sử k1≥≥k2 ).
Gọi hai số đó là a và b ( a , b ∈ N ; a ≥ b )
Ta có a = 5k + c , b = 5t + c ( 0 ≤ c < 5 ; k , t ∈ N )
Do a ≥ b nên k > t
Trừ theo vế tương ứng ta được:
a − b = 5k + c − 5t − c = 5k − 5t
Ta thấy 5k − 5t = 5 ( k − t ) luôn chia hết cho 5 với mọi giá trị của k và t ⇒ điều phải chứng minh.