Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 32 x 0,01 + 16 x 1,5 + 0,96 = 0,16 x 2 + 0,16 x 150 + 0,16 x 6 = 0,16 x 158 = 25,28
2, = 4 x ( 1/1x2 + 1/2x3+ ... + 1/2011x2012) = 4 x ( 1 - 1/2+1/2-1/3+...+1/2011-1/2012) = 4 x ( 1-1/2012 ) = 2011 / 503
3, <=> x^2+x=132
<=> x^2+x-132=0
<=> (x^2+12x) - ( 11x+132)=0
<=>x(x+12) - 11(x+12) = 0
<=> (x-11)(x+12) = 0
<=> x = 11 hoặc x=-12
d, Gọi số đó là x ( bạn tự đặt điều kiện cho x)
Do x chia cho 3;5;7 dư 1 nên x-1 chia hết cho 3;5;7:
=> x-1 chia hết cho 105 ( do 3;5;7 không có ước chung)
Do x là số lớn nhất có 3 chữ số thỏa mãn yêu cầu đề bài nên x-1 = 945
=> x=946.
1) 32 x 0,01 + 16 x 1,5 + 0,96 = 0,32 + 24 + 0,96 = =24,32 + 0,96 = 25,28
2) \(\frac{4}{1}\) x 2 + \(\frac{4}{2}\)x 3 + \(\frac{4}{3}\)x 4 + ...... + \(\frac{4}{2011}\)x 2012 3) \(x\) x (\(x\) + 1) =132 \(x\) = 11
\(Tacó:\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)
Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2013}{2014}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\Rightarrow A=1-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2013}{2014}\)
\(\Rightarrow\)\(\frac{1}{x+1}=\frac{1}{2014}\)
\(\Rightarrow x+1=2014\)
\(\Rightarrow x=2014-1\)
\(\Rightarrow x=2013\)
Vậy x=2013
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)
\(1-\frac{1}{x+1}=\frac{2013}{2014}\)
\(\frac{1}{x+1}=1-\frac{2013}{2014}\)
\(\frac{1}{x+1}=\frac{1}{2014}\)
Vì \(x+1\)là mẫu số nên:
\(x+1=2014\)
\(x=2014-1=2013\)
Vậy ....
P/s: Dấu . là nhân nha!
`x/(x+1)=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(31xx32)`
`=>x/(x+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/31-1/32`
`=>x/(x+1)=1-1/32`
`=>x/(x+1)=31/32`
`=>32x=31(x+1)`
`=>32x=31x+31`
`=>32x-31x=31`
`=>x=31`
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
Ta có : A = \(\frac{1}{1\text{x}2}+\frac{1}{2\text{x}3}+\frac{1}{3\text{x}4}+...+\frac{1}{X\text{x}\left(X+1\right)}\)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
A = \(\frac{1}{1}-\frac{1}{x+1}\)
A = \(\frac{x}{x+1}\)
Ủng hộ mik nhá !!!!
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=?\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-?\)
\(\Rightarrow x+1=?\Leftrightarrow x=?\)
1/1*2 + 1/2*3 + 1/3*4 + .... + 1/99 * 100
= 1- 1/100
= 99/100
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{\left(x-1\right)\times x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x-1}-\dfrac{1}{x}=\dfrac{15}{16}\)
\(1-\dfrac{1}{x}=\dfrac{15}{16}\)
\(\dfrac{1}{x}=1-\dfrac{15}{16}=\dfrac{16}{16}-\dfrac{15}{16}\)
\(\dfrac{1}{x}=\dfrac{1}{16}\)
\(\Rightarrow x=16\)
?