Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
\(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3}{3}\)
\(=\frac{1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]}{3}\)
\(=\frac{1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)}{3}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}=\frac{n\left(n+1\right)\left(2n+4\right)}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{3n\left(n+1\right)}{6}\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2}\)
Vậy chọn C
1/A = 1 + 2 + 3 + 4 +.......+ n
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp
=> 2.A = (1 + n).n
=> A = (1 + n).n/2 => Đpcm
2/ B=1.2+2.3+3.4.....+(n-1).n
ta có
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1)
A=1/3.n.(n-1).(n+1)
\(A=\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n+2}+...+\frac{1}{n+5}-\frac{1}{n+6}\)
\(A=\frac{1}{n}-\frac{1}{n+6}\)
\(A=\frac{6}{n\left(n+6\right)}\)
\(\dfrac{n}{n+1}\)
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có : \(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}n⋮d\\n+1-n⋮d\end{matrix}\right.\)
⇒ 1 ⋮ d ⇒ d = 1
Vậy Ước chung lớn nhất của n và n + 1 là 1
Hay phân số \(\dfrac{n}{n+1}\) là phân số tối giản
Dễ mà