\(\dfrac{37}{51}\) và \(\dfrac{43}{49}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

Ta có:
\(\dfrac{37}{51}< \dfrac{43}{51}\)
\(\dfrac{43}{51}< \dfrac{43}{49}\)
Do đó \(\dfrac{37}{51}< \dfrac{43}{49}\)

4 tháng 3 2023

.

1 tháng 5 2017

Đổi hết ra số thập phân mà so sánh ý bạn.

1 tháng 5 2017

Vậy bạn đổi và làm giúp mình với

11 tháng 4 2017

\(\dfrac{-49}{78}\)<\(\dfrac{0}{78}\)=0=\(\dfrac{0}{-95}\)<\(\dfrac{64}{-95}\)

hông chắc nha :)

b/ sao mà so sánh cùng một lúc bốn phân số được bạn :(

9 tháng 4 2017

bạn nào giải được giúp mình vớikhocroigianroilimdim

a: 51/56=1-5/56

61/66=1-5/66

mà -5/56<-5/66

nên 51/56<61/66

b: 41/43<1<172/165

c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)

5 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

a: 17/200>17/314

b: 11/54=22/108<22/37

c: 141/893=3/19

159/901=3/17

mà 3/19<3/17

nên 141/893<159/901

10 tháng 12 2022

a: \(=\dfrac{-12}{7}\left(\dfrac{4}{35}+\dfrac{31}{35}\right)-\dfrac{2}{7}=\dfrac{-12}{7}-\dfrac{2}{7}=-2\)

b: =(-4)+(-4)+...+(-4)

=-4*25=-100

c: \(=157\cdot\left(-37\right)-41\cdot53+37\cdot157+51\cdot53\)

=10*53

=530

28 tháng 6 2017

a)\(\dfrac{17}{15}>1;\dfrac{29}{37}< 1\Leftrightarrow\dfrac{17}{15}>\dfrac{29}{37}\)

b) \(\dfrac{13}{17}>\dfrac{13}{18}\Leftrightarrow\dfrac{13}{17}>\dfrac{12}{18}\)

d)\(1-\dfrac{2017}{2018}=\dfrac{1}{2018}\)

\(1-\dfrac{2018}{2019}=\dfrac{1}{2019}\)

\(\dfrac{1}{2018}>\dfrac{1}{2019}\Leftrightarrow\dfrac{2017}{2018}< \dfrac{2018}{2019}\)

e) \(\dfrac{2018}{2017}< 1;\dfrac{2019}{2018}>1\Leftrightarrow\dfrac{2018}{2017}< \dfrac{2019}{2018}\)

a) (1/7.x-2/7).(-1/5.x-2/5)=0

=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0

*1/7.x-2/7=0

1/7.x=0+2/7

1/7.x=2/7

x=2/7:1/7

x=2

b)1/6.x+1/10.x-4/5.x+1=0

(1/6+1/10-4/5).x+1=0

(1/6+1/10-4/5).x=0-1

(1/6+1/10-4/5).x=-1

(-8/15).x=-1

x=-1:(-8/15) =15/8

24 tháng 3 2017

Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)