Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-x-27}{27}=\dfrac{2}{3}\Rightarrow-x-27=18\Leftrightarrow x=-45\)
-> chọn B
bài 1:
a) \(4\dfrac{1}{2}x:\dfrac{5}{12}=0,5\) ; b)\(1,5+1\dfrac{1}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x:\dfrac{5}{12}=\dfrac{1}{2}\) \(\dfrac{3}{2}+\dfrac{5}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x\) \(=\dfrac{1}{2}.\dfrac{5}{12}\) \(\dfrac{5}{4}x=\dfrac{2}{3}-\dfrac{3}{2}\)
\(\dfrac{9}{2}x\) \(=\dfrac{5}{24}\) \(\dfrac{5}{4}x=\dfrac{-5}{6}\)
\(x\) \(=\dfrac{5}{24}:\dfrac{9}{2}\) \(x=\dfrac{-5}{6}:\dfrac{5}{4}\)
\(x\) \(=\dfrac{5}{108}\) \(x=\dfrac{-2}{3}\)
c) Cho mình hỏi x ở đâu vậy ???
d)\(\left(x-5\right):\dfrac{1}{3}=\dfrac{2}{5}\) e)\(\left(4,5-2x\right):\dfrac{3}{4}=1\dfrac{1}{3}\)
\(\left(x-5\right)\) \(=\dfrac{2}{5}.\dfrac{1}{3}\) \(\left(\dfrac{9}{2}-2x\right):\dfrac{3}{4}=\dfrac{4}{3}\)
\(x-5\) \(=\dfrac{2}{15}\) \(\dfrac{9}{2}-2x\) =\(\dfrac{4}{3}.\dfrac{3}{4}\)
\(x\) \(=\dfrac{2}{15}+5\) \(\dfrac{9}{2}-2x=1\)
\(x\) \(=\dfrac{77}{15}\) \(2x=\dfrac{9}{2}-1\)
f) \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{7}\) \(2x=\dfrac{7}{2}\)
\(\left(\dfrac{27}{10}x-\dfrac{3}{2}x\right):\dfrac{2}{7}=-3\) \(x=\dfrac{7}{2}:2\)
\(\left[x\left(\dfrac{27}{10}-\dfrac{3}{2}\right)\right]=-3.\dfrac{2}{7}\) \(x=\dfrac{7}{4}\)
\(x.\dfrac{6}{5}=\dfrac{-6}{7}\)
\(x=\dfrac{-6}{7}:\dfrac{6}{5}\)
\(x=\dfrac{-5}{7}\)
bài 2:
Theo bài ra ta có :\(\dfrac{a}{27}=\dfrac{-5}{9}=\dfrac{-45}{b}\)
\(\Rightarrow9a=27.\left(-5\right)\Rightarrow a=\dfrac{27.\left(-5\right)}{9}=-15\)
\(\Rightarrow\left(-5\right)b=\left(-45\right).9\Rightarrow b=\dfrac{\left(-45\right).9}{-5}=81\)
Vậy \(a=-15;b=81\)
Bài 1:
a) \(\dfrac{5}{2}+\left(\dfrac{-3}{2}\right)^2\cdot6-\left|-5\right|\)
\(=\dfrac{5}{2}+\dfrac{9}{4}\cdot6-5\)
\(=2,5+13,5-5\)
\(=11\)
b) \(\dfrac{250^3}{50^3}=\dfrac{50^3\cdot5^3}{50^3}=5^3=125\)
Bài 2:
\(A=\left|x+1,5\right|-4,5\)
Vì \(\left|x+1,5\right|\ge0\forall x\)
\(\Rightarrow\left|x+1,5\right|-4,5\ge-4,5\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
Vậy MIN \(A=-4,5\Leftrightarrow x=-1,5\)
Bài 1 :
a. \(\dfrac{5}{2}+\left(\dfrac{-3}{2}\right)^2.6-\left|-5\right|\)
\(=\dfrac{5}{2}+\dfrac{9}{4}.6-5\)
\(=\dfrac{5}{2}+\dfrac{27}{2}-5\)
\(=11\)
b. \(\dfrac{250^3}{50^3}=\left(\dfrac{250}{50}\right)^3=5^3=125\)
c. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3.3\right)^{10}.5^{20}}{\left(5.5.3\right)^{15}}=\dfrac{5^{10}.3^{10}.3^{10}.5^{20}}{5^{15}.5^{15}.3^{15}}=\dfrac{5^{30}.3^{20}}{5^{30}.3^{15}}=3^5=243\)
Bài 2 :
\(A=\left|x-1,5\right|-4,5\)
Vì \(\left|x-1,5\right|\ge0\) \(\forall x\)
\(\Rightarrow\left|x-1,5\right|-4,5\ge0-4,5=-4,5\)
hay Amin \(\ge-4,5\)
Amin = -4,5 khi :
\(\left|x-1,5\right|=0\)
\(\Rightarrow x+1,5=0\)
\(\Rightarrow x=-1,5\)
Vậy Amin = -4,5 khi \(x=-1,5\)
Các câu dễ tự làm :v
\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1981}=-4\) (sau khi đã sửa đề)
\(\Rightarrow\left(\dfrac{45-x}{1968}+1\right)+\left(\dfrac{40-x}{1973}+1\right)+\left(\dfrac{35-x}{1978}+1\right)+\left(\dfrac{30-x}{1981}+1\right)=0\)\(\Rightarrow\dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1981}=0\)
\(\Rightarrow\left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1981}\right)=0\)
\(\Rightarrow2013-x=0\Rightarrow x=2013\)
\(1+5+9+13+17+.....+x=5050\)
Số các số hạng là:
\(\dfrac{x-1}{4}+1=\dfrac{1}{4}x+\dfrac{3}{4}\)
Như vậy có :
\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\) số hạng
Theo đề bài ta có:
\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\left(x+1\right)=5050\)
\(\Rightarrow\left(\dfrac{1}{4}x+\dfrac{3}{4}\right)\left(x+1\right)=10100\)
\(\Rightarrow\dfrac{1}{4}x^2+\dfrac{1}{4}x+\dfrac{3}{4}x+\dfrac{3}{4}=10100\)
\(\Rightarrow\dfrac{1}{4}x^2+x+\dfrac{3}{4}=10100\)
Kiệt sức.đến đây ko nghĩ nổi nx
a,
\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ 5^x=5^2\\ \Rightarrow x=2\)
Vậy \(x=2\)
b,
\(\left(x+2\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
Vậy \(x=7\) hoặc \(x=-11\)
d,
\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}=-4\\ \dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}+4=0\\ \dfrac{45-x}{1968}+1+\dfrac{40-x}{1973}+1+\dfrac{35-x}{1978}+1+\dfrac{30-x}{1983}+1=0\\ \dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1983}=0\\ \left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\right)=0\)
Vì \(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\ne0\) nên
\(2013-x=0\\ x=2013\)
Vậy \(x=2013\)
e,
\(\dfrac{1}{2016}:2015x=\dfrac{-1}{2015}\\ 2015x=\dfrac{-2015}{2016}\\ x=\dfrac{-1}{2016}\)
Vậy \(x=\dfrac{-1}{2016}\)
Bài 2:
a: \(\left(x-3\right)^2+1\ge1\)
nên \(A=\dfrac{5}{\left(x-3\right)^2+1}\le5\)
Dấu '=' xảy ra khi x=3
b: \(\left|x-2\right|+2\ge2\)
nên \(B=\dfrac{4}{\left|x-2\right|+2}\le2\)
Dấu '=' xảy ra khi x=2
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
a) Ta có: \(\left|2x-1\right|\ge\) 0 (với mọi x)
=> \(5-\left|2x-1\right|\) ≤ 5 (Với mọi x)
Hay A ≤ 5 => Max A = 5 dấu"="xảy ra khi:
\(2x-1=0\)
<=> \(x=\dfrac{1}{2}\)
Ta cos : \(\left|x-1\right|\ge0\)(với mọi x)
<=> \(\left|x-1\right|+3\ge3\)(với mọi x)
<=> \(\dfrac{1}{\left|x-1\right|+3}\ge\dfrac{1}{3}\) (với mọi x)
Hay B ≥ \(\dfrac{1}{3}\) : dấu "=" xảy ra khi : \(x-1=0\)
=> \(x=1\)
Câu 1: Lời giải:
a, Đặt \(A=\dfrac{3x+7}{x-1}\).
Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)
Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).
Câu 3:
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\) khi x = -1
b, Ta có: \(-\left|3-x\right|\le0\)
\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)
Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)
Vậy \(MAX_Q=1010\) khi x = 3
c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất
Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)
\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(MAX_C=5\) khi x = 3
d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)
\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)
Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)
Vậy \(MAX_D=2\) khi x = 2
a,(x+7).(x-1)=45-45
(x+7).(x-1)=0
x+7=0hoac x-1=0
tu ban lam
b,-(x-15)=-5+12
-x+15=7
-x=-2
x=2
c,(x-1).(x-1)=-2.(-32)
tu lam nhe
\(-\dfrac{x}{27}-1=\dfrac{2}{3}\)
\(\Rightarrow-\dfrac{x}{27}=\dfrac{2}{3}+1=\dfrac{5}{3}\)
\(\Rightarrow-3x=27.5\)
\(\Rightarrow x=-135:\left(-3\right)\)
\(\Rightarrow x=-45\)
`->B`
Nếu 22% số đo cần tìm là 1,32 tạ thì số đo cần tìm là