Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.
Bây h ta cần CM 1 trong 3 số chia hết cho 3:
_n=3k(k là số tn) thì n chia hết cho 3(đpcm)
_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)
_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)
Vậy n(n+1)(2n+1) chia hết cho 6
Đặt \(A=\frac{7n-8}{2n-3}\)
Để A lớn nhất thì 2A lớn nhất
Ta có: \(2A=\frac{2.\left(7n-8\right)}{2n-3}=\frac{14n-16}{2n-3}=\frac{14n-21+5}{2n-3}=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(2A=\frac{7.\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)
Do 2A lớn nhất nên \(\frac{5}{2n-3}\)lớn nhất hay 2n - 3 nhỏ nhất
+ Với n < 2 thì 2n - 3 < 0 \(\Rightarrow\frac{5}{2n-3}< 0\left(1\right)\)
+ Với \(n\ge2\) do 2n - 3 nhỏ nhất nên n nhỏ nhất => n = 2 \(\Rightarrow\frac{5}{2n-3}=\frac{5}{2.2-3}=5\left(2\right)\)
So sánh (1) và (2) ta thấy (2) lớn hơn (1) nên A lớn nhất khi n = 2
Với n = 2 thì \(A=\frac{7n-8}{2n-3}=\frac{7.2-8}{2.2-3}=\frac{14-8}{4-3}=6\)
Vậy với n = 2 thì \(\frac{7n-8}{2n-3}\)lớn nhất = 6
Ta co n^2 chia 5 du 1 hoac du 4
=>n^4 chia 5 du 1 hoac du 4
\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)
Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)
Vay n^5-n chia het cho 5