Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S_1=1+2+...+n\)
\(=\frac{n\left(n-1\right)}{2}\)
b) \(S_2=1^2+2^2+...+n^2\)
Ta co :
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
..................................................................................
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế n hằng đẳng thức trên ta được :
\(\Rightarrow\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+3.\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1^3+3.S_2+3.S_1+n\)
\(\Leftrightarrow3S_2=\left(n+1\right)^3-3S_1-\left(n+1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left(n^2+2n+1-\frac{3n}{2}-1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left(n^2+\frac{n}{2}\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)n\left(n+\frac{1}{2}\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)+n\left(n+1\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)+\left(n^2+1\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)\left(2n+1\text{}\right)\)
\(\Leftrightarrow S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\text{}\right)\)
Bỏ 3 dòng từ 2 dòng cuối trở lên nhé
Tức là ko bỏ 2 dòng cuối mà bỏ 3 dòng trên 2 dòng cuối hộ
b: \(\left(x+2\right)^2+2\left(x+2\right)\left(x-2\right)+\left(x+2\right)^2\)
\(=\left(10+2\right)^2+2\cdot\left(10^2-4\right)+\left(10+2\right)^2\)
\(=2\cdot144+2\cdot96=2\cdot240=480\)
a, \(3a^2b^2-6a^2b^3+3a^2b^2\)
\(=6a^2b^2-6a^2b^3=6a^2b^2\left(1-b\right)\)
b, \(a^{n+1}-2a^{n-1}=a^2.a^{n-1}-2a^{n-1}=a^{n-1}\left(a^2-2\right)\)
c, \(3a^2b\left(a+b-2\right)-4ac^2-4bc^2+8c^2\)
\(=3a^2b\left(a+b-2\right)-4c^2\left(a+b-2\right)\)
\(=\left(3a^2b-4c^2\right)\left(a+b-2\right)\)
c, \(5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^{n+1}-2b^n\)
\(=5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^n.b-2b^n\)
\(=5a^n\left(a^2-ab+1\right)-2b^n\left(a^2-ab+1\right)\)
\(=\left(5a^n-2b^n\right)\left(a^2-ab+1\right)\)
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)
Vậy A < 20002
c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 50 < 52 => 2.50 < 2.52
=> E < F