K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

22 tháng 8 2023

gg

 

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

10 tháng 8 2021

bạn trả lời hết được không

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);                                                   

b)

\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);

c)

\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);                                                               

d)

\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).

6 tháng 10 2017

ooooooooooooooooo

1 tháng 7 2023

\(2x^2y^3+5y^2x^3+\left(-\dfrac{1}{2}x^3y^2\right)+\left(-\dfrac{1}{2}x^2y^3\right)\\ =\left[2x^2y^3+\left(-\dfrac{1}{2}x^2y^3\right)\right]+\left[5x^3y^2+\left(-\dfrac{1}{2}x^3y^2\right)\right]\\ =\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

9 tháng 12 2019

1) 22x + 1 = 32

=> 22x + 1 = 25

=> 2x + 1 = 5

=> 2x = 5 - 1

=> 2x = 4

=> x = 2

(2) 3.x3 - 100 = 275

=> 3x3 = 275 + 100

=> 3x3 = 375

=> x3 = 375 : 3

=> x3 = 125

=> x3 = 53

=> x = 5

(4) (x - 1)3 - 25 = 72

=> (x - 1)3 = 49 + 32

=> (x - 1)3 = 81

(xem lại đề)

5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)

=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)

Vậy ...

6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

       \(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)

=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)

Vậy ...

mk lm bài mà mk cho là ''khó'' nhất thôi nha 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

ADTC dãy tỉ số bằng nhau ta có 

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)