Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ không chép lại đề nữa nhé:
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{2009.2011}\right)\)=\(\frac{1}{2}.\left(\frac{3-1}{1-3}+\frac{7-5}{5-7}+...+\frac{2011-2009}{2009-2011}\right)\)
= \(\frac{1}{2}.\left(\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+...+\frac{2011}{2009.2011}-\frac{2009}{2009.2011}\right)\)
=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
=\(\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
=\(\frac{1}{2}.\frac{2010}{2011}\)
=\(\frac{1005}{2011}\)
Giải
Ta có A= [1+1/3.5] + [1+1/5.7] + [1+1/7.9] + ... + [1+1/37.39]
=>A= (1+1+1+...+1) +(1/3.5 + 1/5.7 + 1/7.9 + ... + 1/37.39)
=> A = 18 + 1/2.(2/3.5+2/5.7+2/7.9+...+2/37.39)
=>A = 18 + 1/2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=> A= 18 + 1/2.(1/3-1/39)
=> A= 18 + 1/2 . 4/13
=>A= 18 + 2/13 = 236/13
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
Tích mk nha bn !!!! ^_^
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Chúc bn hok giỏi !!!!!!!!! ^_^
\(\frac{2^2}{1x3}\)x \(\frac{4^2}{3x5}\)x \(\frac{6^2}{5x7}\) x \(\frac{8^2}{7x9}\)
= \(\frac{4}{3}\)x \(\frac{16}{15}\)x \(\frac{36}{35}\)x \(\frac{64}{63}\)
= \(1.486077098\)
2A = 2/3x5 + 2/5x7 + ... + 2/47x49 + 2/49x51
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/47 - 1/49 + 1/49 - 1/51
2A = 1/3 - 1/51
2A = 16/51
A = 16/51 : 2 =8/51
A = 1/2 . ( 1/3 -1/5 + 1/5-1/7 + ...+1/47 - 1/49 + 1/49 - 1/51)
A = 1/2 .(1/3 -1/51)
A=1/2 . 16/51
A= 8/51
Q= 3/3x5 + 3/5x7 + 3/7x9 +...+ 3/47x49
Q= (3/3 -3/5) + (3/5-3/7) + (3/7-3/9)+...+(3/47-3/49)
Q= 3/3 - 3/5 + 3/5 - 3/7 + 3/7 - 3/9 + ... + 3/47 - 3/49
Q=3/3 - 3/49
Q= 46/49
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)=\frac{1}{2}.\frac{2008}{6033}=\frac{1004}{6033}\)
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{2009x2011}\)
\(=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+....+\frac{1.2}{2009.2011.2}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2008}{6033}=\frac{2008}{12066}\)