K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

CÁCH 1: 

VẼ DF VUÔNG GÓC VỚI AB, EG VUÔNG GÓC VỚI AC

BD = CE => SABC = SACE  => AB.DF = AC.EG => DF/EG = AC/AB   (1)

TAM GIÁC ADF ĐỒNG DẠNG VỚI TAM GIÁC AEG => DF/EG = AD/AE (2)

TỪ (1) VÀ (2) => AC/AB = AD/AE, CHO TA  TAM GIÁC ABE ĐỒNG DẠNG VỚI TAM GIÁC ACD

=> GÓC  ABE = GÓC ACD => TAM GIÁC ABC CÂN (đpcm)

bạn tự vẽ hình nhé

27 tháng 4 2015

Đúng Hỏa Tinh Liêm Châu nói đúng đó 

11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.Bài 4: Cho hình...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.

Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.

Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.

Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC

. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng

a) Tam giác NBC đồng dạng với tam giác BCM                                  b) BM vuông góc với CN.

Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂

. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.

Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:

a) Tam giác DBM và MCE đồng dạng

b) Tam giác DME cùng đồng dạng với hai tam giác trên.

c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.

d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.

 

0
28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Trần Nam Anh - Toán lớp 8 - Học toán với OnlineMath

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Trần Nam Anh - Toán lớp 8 - Học toán với OnlineMath

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .a ) Chứng minhcác tam giác ABD và ACD vuôngb ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = IDBài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DCa ) Tính các góc BAD và góc DACb ) Chứng minh tứ giác ABCD là hình thang cân c )...
Đọc tiếp

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .

a ) Chứng minhcác tam giác ABD và ACD vuông

b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID

Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC

a ) Tính các góc BAD và góc DAC

b ) Chứng minh tứ giác ABCD là hình thang cân 

c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi

Bài 3 :  Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .

a) Cminh : tam giác AEF vuông cân 

b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD 

c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD 

3
30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi