Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
Phân hoạch \(100\) số tự nhiên đầu tiên thành các tập hợp sau:
\(A_1=\left\{1\right\}\)
\(A_2=\left\{2;4;6;8;...;100\right\}\)
\(A_3=\left\{3;9;15;...;99\right\}\)
\(A_5=\left\{5;25;35;55;...;95\right\}\)
Nghĩa là \(A_i\) với \(i\) nguyên tố chứa các bội của \(i\) mà không chia hết cho số nào nhỏ hơn \(i\) trừ số \(1\).
Giả sử có 27 số mà trong chúng không có ước chung lớn nhất khác 1.
Với mọi \(i\), trong mỗi \(A_i\) ta chỉ chọn được tối đa một số, vì nếu chọn 2 số thì chúng có ước chung là \(i\).
Có 25 số nguyên tố nhỏ hơn 100, tương ứng trong 25 \(A_i\) chỉ chọn được 25 số là tối đa.
Chọn thêm số 1 thì tối đa chọn được 26 số sao cho không có ước chung lớn nhất khác 1.
Nên nếu chọn 27 số thì trong chúng có ước chung lớn nhất khác 1.
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)