K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

a, dễ lắm ( khỏi làm )

b, KMB + OMB = 90 = HMB + MBO 

 OMB = MBO 

=> HMB = KMB ( đến đây tự làm tiếp )

c, từ câu b=>

d, Tam giác OME vuông tại M , MH đường cao => MO.MO = MH.OE = R.R ( 0 đổi )

e, AIKB la hinh thang vuong

=> S aikb = OM,MH => 0 doi <=> M la diem chinh giua cung AB

 **** de

5 tháng 11 2016

A B H K O M x y N

a/ Ta có : \(\hept{\begin{cases}AH\text{//}OM\text{//}BK\\OA=OB\end{cases}}\) \(\Rightarrow\)OM là đường trung bình của hình thang ABKH

\(\Rightarrow\)\(AH+BK=2OM=2R\) (không đổi)

b/ Từ M hạ MN vuông góc với AB tại N (1)

Ta sẽ chứng minh MN = MK

Xét trong (O;R) thì : \(\widehat{BMK}=\widehat{MAB}\) (cùng chắn cung MB)

Mà : \(\hept{\begin{cases}\widehat{BMK}+\widehat{MBK}=90^o\\\widehat{MAB}+\widehat{MBA}=90^o\end{cases}}\) \(\Rightarrow\)\(\widehat{MBA}=\widehat{MBK}\)

Xét hai tam giác vuông NBM và KBM có MB là cạnh huyền (chung) , \(\widehat{MBA}=\widehat{MBK}\)

\(\Rightarrow\)\(\Delta NBM=\Delta KBM\) (ch.gn)

\(\Rightarrow\) MN = MK (2)

Từ (1) và (2) suy ra đpcm.

c/ Vì ABKH là hình thang vuông nên \(S_{ABKH}=\frac{1}{2}\left(AH+BK\right).HK=\frac{1}{2}.2OM.HK\)

\(=\left(2MN\right).OM\) . Mà OM = R không đổi, vậy \(maxS_{ABKH}\Leftrightarrow maxMN\Leftrightarrow MN=OM\)\(\Leftrightarrow\)M là điểm chính giữa cung AB

Khi đó thì : \(S_{ABKH}=2OM.OM=2R^2\)

4 tháng 11 2016

không biết

27 tháng 12 2015

a, Gọi AM giao CH tại K

          BM giao HD tại T

AC , AH là tt (M) => góc MKH = 90 độ

TT                           góc KMT = 90 độ

                               góc AMB = 90 độ 

=> góc KHT = 90 độ => Tam giác CHD vuông tại H

Ta có MC = MD = MH ( =R )

=> M thuộc DC => đpcm

Tam giác OMA cân tại O => OMA = OAM

CMA + CAM = 90 độ

CAM = MAH> OAM + CMA = 90 độ => OMA + AMC = 90 độ => OM vuông góc DC => đpcm

c, Tam giác OMI vuông tại M ( MI là tt ) => MO^2= HO.OI =R^2  

=> đpcm