Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu p chia 3 dư 2 => p + 4 chia hết cho 3
=> p chia 3 dư 1
=> p + 8 chia hết cho 3
=> dpcm
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu:
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3)
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn
Ví p là SNT > 3
=> p có dạng 3q + 1 hoặc 3p + 2
+ Xét p = 3p + 2
Ta có :
p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )
Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số
=> loại p = 3p + 2
Vậy p = 3q + 1
Ta có :
p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )
Ví 3 ( q + 3 ) chia hết cho 3
Mà p + 8 > 3
=> p + 8 là hợp số
Vậy p + 8 là hợp số
p ∈ P ; p > 3
=> p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
xét p = 3k+1
=> p + 8 = 3k + 1 + 8
=> p + 8 = 3k + 9 ⋮ 3 là hợp số
xét p = 3k + 2
=> p + 4 = 3k + 2 + 4
=> p + 4 = 3k + 6 ⋮ 3 là hợp số ; mà theo đề bài p + 4 là số nguyên số
=> p = 3k + 2 (loại)
vậy p + 8 là hợp số
p ∈ P ; p > 3
=> p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
xét p = 3k+1
=> p + 8 = 3k + 1 + 8
=> p + 8 = 3k + 9 ⋮ 3 là hợp số
xét p = 3k + 2
=> p + 4 = 3k + 2 + 4
=> p + 4 = 3k + 6 ⋮ 3 là hợp số ; mà theo đề bài p + 4 là số nguyên số
=> p = 3k + 2 (loại)
vậy p + 8 là hợp số
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Vì p > 3
=>p có 2 dạng là 3k+1 và 3k+2
Xét p=3k+1=>p+4=3k+1+4=3k+5=3.(k+1)+2 là số nguyên tố.=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số
Xét p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số( loại)
Vậy p+8 là hợp số
Vì p là số nguyên tố lớn hơn 3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>p+4=3k+1+4=3k+5=3.(k+1)+2 là số nguyên tố.
=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số
*Xét p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(vô lí)
Vậy p+8 là hợp số