K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2022

Với \(k=1\) không thỏa mãn

Với \(k\ne1\Rightarrow y=-\dfrac{2k}{k-1}x+\dfrac{2}{k-1}\)

Hai đường thẳng song song khi:

\(\left\{{}\begin{matrix}-\dfrac{2k}{k-1}=\sqrt{3}\\\dfrac{2}{k-1}\ne0\end{matrix}\right.\) \(\Rightarrow k=-3+2\sqrt{3}\)

5 tháng 12 2016

y = kx +3 <=>kx+3-y=0 => x=0,y=3

đường thẳng d luôn đi qua một điểm cố định(0;3)

b)khoảgn cách từ gốc toạ độ O tới đường thẳng d bằng căn 2 của x^2+y^2

=>x^2+y^2=4  (1)

Thế y = kx +3, \(x^2+\left(kx+3\right)^2=4\)

\(x^2\left(1+k^2\right)+6kx+5=0\)có nghiệm khi k>=\(\frac{\sqrt{5}}{3}\)

c)

6 tháng 12 2016

phần c ?

8 tháng 12 2021

Gọi \(\left(d\right):y=ax+b\) là đt của (d)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne\sqrt{3}\\b=1\end{matrix}\right.\Leftrightarrow\left(d\right):y=2x+1\Leftrightarrow2x-y+1=0\)

Khoảng cách từ K đến (d) là \(d\left(K;d\right)=\dfrac{6\cdot1-1+1}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

20 tháng 11 2021

a) Gọi đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=a'x+b'\)

Vì \(\left(d'\right)//\left(d\right)\Rightarrow a'=2\)

Vậy phương trình đường thẳng (d') có dạng \(\left(d'\right):y=2x+b'\)

Mặt khác (d') đi qua M(3;4) nên điểm M(3;4) thuộc \(\left(d'\right):y=2x+b'\)

Thay \(x=3;y=4\)vào hàm số \(y=2x+b'\)ta có:

\(4=2.3+b'\Leftrightarrow b'=-2\)

Vậy phương trình đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=2x-2\)

b) Gọi OH là khoảng cách từ O đến (d). Gọi giao điểm của (d):y = 2x + 6 với hai trục Ox, Oy lần lượt là A(xA;0), B(0;yB).

Thay x = xA; y = 0 vào hàm số y = 2x + 6, ta có: \(0=2x_A+6\Leftrightarrow x_A=-3\)

Thay x = 0; y = yB vào hàm số y = 2x + 6, ta có: \(y_B=2.0+6=6\)

Vì \(OA=\left|x_A\right|;OB=\left|y_B\right|\)\(\Rightarrow OA=\left|-3\right|=3;OB=\left|6\right|=6\)

\(\Delta OAB\)vuông tại O, đường cao OH \(\Rightarrow\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\left(htl\right)\)

Rồi bạn thay OA, OB vào và dễ dàng tính được OH

29 tháng 2 2020

\(1,y=\left(m-2\right)x+3+1\)      \(\left(d\right)\)

\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)

\(\Rightarrow-1=m-2+m+1\)

\(\Rightarrow m=0\)

\(2,y=1-3x\left(d'\right)\)

Để: \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)

\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)

\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)

Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)

Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)

Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)

Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)

Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) 

\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)

\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)

\(\Leftrightarrow m=\frac{2}{3}\)