K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

\(1,\left|2x-3\right|=x-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\\left[{}\begin{matrix}2x-3=x-5\\2x-3=-x+5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}5\\\left[{}\begin{matrix}x=-2\\x=\frac{8}{3}\end{matrix}\right.\end{matrix}\right.\) (ko thỏa mãn)

=> pt vô nghiệm

\(2,\left|3x+2\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}3x+2=x+1\\3x+2=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\)

\(3,\left|2x+1\right|=7-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}7-x\text{≥}0\\\left[{}\begin{matrix}2x+1=7-x\\2x+1=x-7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}7\\\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\end{matrix}\right.\) (loại)

=> pt vô nghiệm

\(4,\left|2x-5\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}2x-5=x+1\\2x-5=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\)

\(5,\left|6x-2\right|=3x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\text{≥}0\\\left[{}\begin{matrix}6x-2=3x-4\\6x-2=-3x+4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}\frac{4}{3}\\\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(6,\left|3x-2\right|=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\text{≥}0\\\left[{}\begin{matrix}3x-2=x-2\\3x-2=-x+2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}2\\\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(7,\left|2x+3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

\(8,\left|2-x\right|=2x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\\left[{}\begin{matrix}2-x=2x-1\\2-x=-2x+1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)

\(9,\left|2x-1\right|=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\\left[{}\begin{matrix}2x-1=x-3\\2x-1=-x+3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\\left[{}\begin{matrix}x=-2\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(10,2\left|x-1\right|=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\\left[{}\begin{matrix}2x-2=x+2\\2x-2=-x-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

16 tháng 9 2016

\(\left(x-1\right)^2-2\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2=\left(x-1-x+3\right)^2=2^2=4\)

\(\left(2x+3\right)^2+\left(2x+3\right)\left(2x-6\right)+\left(x-3\right)^2=\left(2x+3\right)^2+2\left(2x+3\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+3+x-3\right)^2=\left(3x\right)^2=9x^2\)

máy pa lag ko vào đc tn

a: \(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)

\(\Leftrightarrow4x^2+4x-8-4x^2-16x-16=0\)

=>-12x-24=0

=>-12x=24

hay x=-2

b: \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

=>2x=1-41=-40

hay x=-20

c: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)

\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)

=>8x=-40

hay x=-5

1 tháng 12 2019

TXĐ: D=R

\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+4\right)\)

\(\Leftrightarrow\frac{2x^2-3x-6}{2}-4=\sqrt{2x^2-3x+2}-4\)

\(\Leftrightarrow\frac{2x^2-3x-14}{2}=\frac{2x^2-3x-14}{\sqrt{2x^2-3x+2}+4}\)

\(\left[{}\begin{matrix}2x^2-3x-14=0\\\frac{1}{2}=\frac{1}{\sqrt{2x^2-3x+2}+4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-2\\x=\frac{7}{2}\end{matrix}\right.\\\text{ pt vô nghiệm}\end{matrix}\right.\)

Vậy ....

19 tháng 7 2017

Tìm x biết:

b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)

<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)

<=>0x-1=0

<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)

=> Không có giá trị x nào thỏa mãn

c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)

<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)

<=> 65x+100=0

<=> x=\(\dfrac{-20}{13}\)

d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)

<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)

<=> -10x-68=0

<=> x=\(\dfrac{-34}{5}\)

5 tháng 4 2020

§5. Dấu của tam thức bậc hai

5 tháng 4 2020

§5. Dấu của tam thức bậc hai