Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(D\left(x\right)=3x^2+10x-8x=3x^2+2x=0\)
\(\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow x=0;x=-\frac{2}{3}\)
Vậy tập nghiệm đa thức D(x) là S = { -2/3 }
Cho M(x) = 10x3 - 8x + x2 +12 = 0
=> (10x3 +x2) - 8x+12 = 0
=> 5. [x2 (10x +1) - 8x + 12] = 5.0
=> 5x2 (10x+1) - 40x + 60 = 0
=> 5x2 (10x + 1) - 40x -4 + 64 = 0
=>(10x + 1) (5x2 - 4 ) = -64
=>10x +1 thuộc Ư(-64)
Mà 10x +1 chia 10 dư 1
=>10x + 1 =1
=> 10x = 0
=> x = 0
=>5x2 - 4 = 5 . 0 -4 = -4
=> vô lí(vì 1 . (-4 ) = -4 khác -64)
Vậy x không có giá trị thỏa mãn đề bài
\(R\left(x\right)=x^2+3x\)
a) Ta có:
\(R\left(x\right)=x^2+3x\)
\(R\left(x\right)=x\left(x+3\right)\)
\(R\left(x\right)=x\left(x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3
b) Các nghiệm của R(x) là 0 và -3 (ở phần a)
1 ) 3x^2 - 11x + 6 = 3x^2 - 9x - 2x + 6 = 3x( x- 3 ) - 2( x - 3) = ( 3x - 2 )( x - 3 )
2) 8x^2 - 2x - 1 = 8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
3; 8x^2 - 2x - 1 =8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
4; x^4 - 3x^2 - 4 = x^4 - 4x^2 + x^2 - 4 = x^2 ( x ^2 - 4 ) + x^2 - 4 = ( x^2 + 1 )( x^2 - 4 ) = ( x^2 + 1 )( x - 2 )( x + 2)
5) = x^2 ( x + 2 ) - 3 ( x+ 2 ) = ( x^2 - 3 )( x + 2 )
Nhiều quá
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
Bài 11:
a: Đặt f(x)=0
=>\(8x^2-6x-2=0\)
a=8; b=-6; c=-2
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{-2}{8}=\dfrac{-1}{4}\)
b: Đặt G(x)=0
\(\Leftrightarrow5x^2-6x+1=0\)
=>5x2-5x-x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
c: Đặt h(x)=0
=>-2x2-5x+7=0
\(\Leftrightarrow-2x^2-7x+2x+7=0\)
=>(2x+7)(-x+1)=0
=>x=1 hoặc x=-7/2