\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Điều kiện xác định tự làm nha:

\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\)

\(\Leftrightarrow2x+17+2\sqrt{\left(x+1\right)\left(x+16\right)}=2x+13+2\sqrt{\left(x+4\right)\left(x+9\right)}\)

\(\Leftrightarrow2+\sqrt{\left(x+1\right)\left(x+16\right)}=\sqrt{\left(x+4\right)\left(x+9\right)}\)

\(\Leftrightarrow4+x^2+17x+16+4\sqrt{\left(x+1\right)\left(x+16\right)}=x^2+13x+36\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+16\right)}=-x+4\)

Điều kiện: \(x\le4\)

\(\Leftrightarrow x^2+17x+16=x^2-8x+16\)

\(\Leftrightarrow25x=0\)

\(\Leftrightarrow x=0\)

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

3 tháng 8 2018

a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)

\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)

\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)

Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)

b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)

kl: x=2

c) \(\sqrt{x^4-8x^2+16}=2-x\)

\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)

\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)

Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)

(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)

Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)

Kl: x=-3, x=-1,x=2

d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)

Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)

Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)

Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)

e) Đk: \(x\ge-\dfrac{3}{2}\)

\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)

\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)

kl: \(x=-\dfrac{5}{8}\)

f) Đk: x >/ 5

\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\left(N\right)\)

kl: x=9

16 tháng 1 2019

Dài dữ

24 tháng 11 2015

Điều kiện: x > -1

PT <=> \(\left(\sqrt{x+1}-1\right)+\left(\sqrt{x+4}-2\right)+\left(\sqrt{x+9}-3\right)+\left(\sqrt{x+16}-4\right)=\sqrt{x+100}-10\)

<=> \(\frac{x+1-1}{\sqrt{x+1}+1}+\frac{x+4-4}{\sqrt{x+4}+2}+\frac{x+9-9}{\sqrt{x+9}+3}+\frac{x+16-16}{\sqrt{x+16}+4}=\frac{x+100-100}{\sqrt{x+100}+10}\)

<=> \(\left(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}\right).x=0\)

<=> x = 0  (thỏa mãn)

Vì \(\sqrt{x+1}+1<\sqrt{x+100}+10\Rightarrow\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\)=

=> \(\frac{1}{\sqrt{x+1}+1}-\frac{1}{\sqrt{x+100}+10}>0\) nên \(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}>0\)

Vậy x = 0 

24 tháng 11 2015

phải gọi là quá khó che hơi j má