Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Để 5n+3 chia hết cho 2n-3
Ta có:
(5n+3)-(2n-3) chia hết cho 2n-3[vì 5n+3 chia hết cho 2n-3 và 2n-3 cũng vậy]
=>2(5n+3)-5(2n-3) chia hết cho 2n-3
=>10n+6-10n-15 chia hết cho 2n-3
=>10n+6-10n+15 chia hết cho 2n-3
=>(10n-10n)+(6+15) chia hết cho 2n-3
=>21 chia hết cho 2n-3
=> 2n-3 là Ư(21) thuộc Z={-7;-3;-1;-21;21;7;3;1}
+)2n-3=-7
2n=-4
n=-2
+)2n-3=-3
2n=0
n=0
+)2n-3=-1
2n=2
n=1
+)2n-3=-21
2n=-18
n=-9
Rồi cứ thế thử tiếp với hết ước của 21 sau đó chọn ra n thuộc Z nhé.
Đúng thì tk nha mng.
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1 n-2=-1
n =1+2 n =-1+2
n =3 E Z(chọn) n =1 E Z(chọn)
Vậy:n={1;3}
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1 n-2=-1 n-2=5 n-2=-5
n =1+2 n =-1+2 n =5+2 n =-5+2
n =3 n =1 n =7 n=-3
Vậy:n={1;3;-3;7}
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a)A=(3n+3-5)/n+1
=3-5/(n+1)
\(A=\frac{3n-2}{n+1}\inℤ\Leftrightarrow3n-2⋮n+1\)
\(\Rightarrow3n+3-5⋮n+1\)
\(\Rightarrow3\left(n+1\right)-5⋮n+1\)
\(3\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)