Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)
Đây mình trả lời với x là số thực.
1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.
2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.
3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.
4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.
Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.
5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.
6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.
7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.
8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.
9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.
10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.
11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.
Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.
a) \(16x^2-8x+1=\left(4x\right)^2-2.4x.1+1^2=\left(4x-1\right)^2\)\(27x^3-27x^2+9x-1=\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1^2-1^3=\left(3x-1\right)^3\)c) \(25x^2+20x+4=\left(5x\right)^2+2.5x.2+2^2=\left(5x+2\right)^2\) d) \(x^3+6x^2+12x+8=x^3+3x^2.2+3x.2^2+2^3=\left(x+2\right)^3\)
Viết về bình phương của 1 tổng hoặc 1 hiệu. Lập phương của 1 tổng hoặc 1 hiệu
a)16x2−8x+116x2−8x+1
b)27x3−27x2+9x−127x3−27x2+9x−1
c) 25x2+20x+425x2+20x+4
d) x3+6x2+12x+8
TRẢ LỜI
a/(4x)^2-2.4x+1^2=(4x-1)^2
b/SAI Đề nhé phải là 27x^3-9x^2+27x-1=(3x-1)^3
c/(5x)^2+2.5x+2^2=(5x-2)^2
d/x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3
a) \(9x^2+6x+1=\left(3x+1\right)^2\)
b)\(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
c)\(x^2y^4-2xy^2+1=\left(xy^2-1\right)^2\)
d) \(x^2+\frac{2}{3}x+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2\)
a) 9x2 + 6x + 1 = ( 3x + 1 )2
b) x2 - x + 1/4 = ( x - 1/2)2
c) x2 . y4 - 2xy2 + 1 = ( xy2 - 1 ) 2
d) x2 + 2/3x + 1/9 = (x+1/3)2
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) 6x - 9 - x2
= - (x2 - 6x + 9 )
= - ( x2 - 2.x.3 + 32 )
= - ( x - 3 )2
c) x2 - 16
= x2 - 42
= ( x - 4 )( x + 4)
d) 9x2 - 25
= ( 3x )2 - 52
= ( 3x - 5 )( 3x + 5 )
e ) x4 - y4
= ( x2)2 - ( y2 )2
= ( x2 - y2 )( x2 + y2 )
f) x6 -y6
= ( x3 )2 - ( y3)2
=( x3 - y3 )( x3 + y3 )
g) 8x3 - \(\dfrac{1}{27}\)
= ( 2x )3 - ( \(\dfrac{1}{3}\))3
= ( 2x - \(\dfrac{1}{3}\) ) ( 2x + \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))
a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)
c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)
d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)
e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)
f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)
g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)
h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)
k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)
a, (x+2)^2
b, (x-3)^2
c, (2x+3)^2
d, (3x-1)^2
e, (x+5)^2
g, (4x-1)^2
a) x2 + 4x + 4 = ( x + 2 )2
b) x2 - 6x + 9 = (x-3)2
c) 4x2 + 12x + 9 = (2x)2 + 2.2x.3 + 3^2 = (2x + 3)2
d) 9x2 - 6x + 1 = (3x)2 - 2.3x.1 + 1^2 = (3x-1)2
e) x2 + 25 +10x = x2 + 2.x.5 + 52 = (x+5)2
g) 16x2 +1 - 8x = (4x)2 - 2.4x.1 + 1^2 = (4x-1)2