Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102
A=1-1/102=102/102-1/102=101/102
ý b thì chờ mình tí tìm cách lập luận đã nhé
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=1-\frac{1}{102}\)
\(A=\frac{101}{102}\)
Bài 1
a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tk mình nha!!
Câu 2:
\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)
\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)
\(=\frac{3\cdot100}{2}\)
\(=\frac{300}{2}=150\)
\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+.....+\frac{2}{99}-\frac{2}{100}\)
Ta tính các số âm và số dương giống nhau cộng lại có tổng bằng 0
\(\Rightarrow A=\frac{2}{2}-\frac{2}{100}\)
\(A=\frac{100}{100}-\frac{2}{100}=\frac{98}{100}=\frac{49}{50}\)
Đúng 100%
Đúng 100%
Đúng 100%
\(A=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+....+\frac{2}{99\cdot100}\)
\(A:2=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)
A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A:2=\frac{1}{2}-\frac{1}{100}\)
\(A:2=\frac{49}{100}\)
A = \(\frac{49}{50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
A= \(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\). \(\frac{4^2}{5.6}\).
A= \(\frac{1.1}{1.2}\). \(\frac{2.2}{2.3}\). \(\frac{3.3}{3.4}\). \(\frac{4.4}{4.5}\).
A= \(\frac{1.2.3.4}{1.2.3.4}\). \(\frac{1.2.3.4}{2.3.4.5}\).
A= 1. \(\frac{1}{5}\).
A= \(\frac{1}{5}\).
Vậy A= \(\frac{1}{5}\).
B= \(\frac{3}{4}\). \(\frac{8}{9}\). \(\frac{15}{16}\)..... \(\frac{899}{900}\).
B= \(\frac{1.3}{2.2}\). \(\frac{2.4}{3.3}\). \(\frac{3.5}{4.4}\)..... \(\frac{29.31}{30.30}\).
B= \(\frac{1.2.3.....29}{2.3.4.....30}\). \(\frac{3.4.5.....31}{2.3.4.....30}\).
B= \(\frac{1}{30}\). \(\frac{31}{2}\).
B= \(\frac{31}{60}\).
Vậy B= \(\frac{31}{60}\).