Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a 25 - y^2 = 8(x-2009)
=> 5^2 - y^2 = 8x - 8*2009
=> (5^2 - y^2) - ( 8x - 8*2009) = 0
=> 5^2 - y^2 = 0 và 8x - 8*2009 = 0
=> 5^2 = y^2 và 8x = 8*2009
=> y=5 và x=2009
Có: \(x+y+9=xy-7\)
\(\Leftrightarrow x+16=y\left(x-1\right)\)
\(\Leftrightarrow\frac{x+16}{x-1}=y\)
\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)
Bn giải x ra rồi tính y
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Phân tích 1997=1*1997 và ngược lại chia TH giải
a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x^3-16x-x^2-1\right]x^2-1\)
\(=x^5-16x^3-x^4-x^2-1\)
b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)
\(=y^2-3y+3y^2+9-y^2+2y^2-4\)
\(=5y^2-3y+5\)
c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)
\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)
d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)
Chúc bạn học tốt!!!
a/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{8}-\dfrac{y}{4}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{8}-\dfrac{2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\dfrac{1-2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right)x=40\)
Vì \(x,y\in Z;1-2y\in Z;1-2y,x\inƯ\left(40\right)\)
Mà \(1-2y⋮2̸\)
Ta có bảng :
\(y\) | \(1-2y\) | \(x\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(1\) | \(40\) | tm |
\(1\) | \(-1\) | \(-40\) | tm |
\(8\) | \(5\) | \(8\) | tm |
\(3\) | \(-5\) | \(-8\) | tm |
Vậy .................
Ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=25-y^2\)
\(\Leftrightarrow8\left(x-2009\right)^2+y^2=25\)\(\left(1\right)\)
Vì \(y^2\ge0\Leftrightarrow\left(x-2009\right)^2\le\dfrac{25}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009\right)^2=1\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=0\) thay vào \(\left(1\right)\Leftrightarrow y^2=25\Leftrightarrow\)\(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=1\) thay vào \(\left(1\right)\Leftrightarrow y^2=17\left(loại\right)\)
Vậy ..
\(\Leftrightarrow8\left(x-2009\right)^2⋮8;8\left(x-2009\right)^2\le25;x\in N\)
Tự giải tiếp nhé
c. x+y+9=xy-7
=> 9+7=xy-x-y
=> xy-x-y=16
=> x(y-1)-(y-1)=17
=> (y-1)(x-1)=17
Mà x,y là số tự nhiên
=> (y-1)(x-1)=1.17=17.1
•y-1=1;x-1=17=> y=2; x=18
• y-1=17; x-1=1=> y=18; x=2
Vậy (x;y) là (18;2) hoặc (2;18)
a)Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm sương (2009 , 5)