Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=\left(x^2-2x+2x-4\right)-\left(x^2+x-3x-3\right)\)
\(=x^2-2x+2x-4-x^2-x+3x+3\)
\(=x^2-x^2-2x+2x+3x-4+3\)
\(=3x-1\)
Chúc bạn học tốt!!!
c/ \(\dfrac{x+4}{x+1}-2=\dfrac{2-x}{x}\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
a) \(5-\left(x-6\right)=4\left(3-2x\right)\\ < =>5-x+6=12-8x\\ < =>-x+8x=5+6-12\\ < =>7x=-1\\ =>x=-\dfrac{1}{7}\)
Vậy: Tập nghiệm của pt là S= {-1/7}.
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)
\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)
\(A=-12x\)
\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)
\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)
\(B=-3x-12\)
Câu C tương tự.
Chúc bạn học tốt!!!
A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)
A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)
A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)
A = \(-4x^2-12x-8+4x^2+8=-12x\)
b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)
B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)
B = \(-6x^2-3x-6\)
(8x-3)(3x+3)-(4x+7)(x+4)=(2x+1)(5x-1)
⇔8x(3x+3)-3(3x+3) - 4x(x+4)+7(x+4) = 2x(5x-1)+1(5x-1)(Có thể bỏ bước này)
⇔\(24x^2\) +24x-9x-9-\(4x^2\)-16x+7x+28=\(10x^2\)- 2x+5x-1
⇔24\(x^2\) +24x- 9x- 4\(x^2\)-16x+7x-10\(x^2\)+ 2x-5x=9-28-1
⇔\(10x^2\) + 3x = -20
⇔ x(10x+3)=-20
⇔\(\left\{{}\begin{matrix}x=-20\\10x+3=-20\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x=-20\\10x=-17\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x=-20\\x=-17\end{matrix}\right.\)
Vậy x = { -20; -17}
Mình không chắc chắn là đúng vì kết quả khá xấu ^^''
mk chỉ làm bài 1 và 1 câu bài 2 vi no tuong duong
1. x+x +2 = 86
x = số thứ nhất = 42
x+2 = số t2 = 44
2.a) x2-6x +10 = (x-3)2 +1 >0 với mọi x
(vì (x-3)2 >= 0)
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
Bài 1:
a: \(\Leftrightarrow x^2-4x-x^2+8=0\)
=>-4x+8=0
hay x=2
b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)
=>2x+4=4
hay x=0
\(x^2< 2x\)
\(\Leftrightarrow-2< x< 2\)
\(\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow-3=5x\)
\(\Rightarrow5x=-3\)
\(\Rightarrow x=-\dfrac{3}{5}\)
Vậy ....
P/s : Làm bừa !
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Ko thấy j hết á bạn
1)
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(3x-6+4x-4=25\)
\(7x-10=25\\ 7x=35\\ x=5\)
2)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\left(x-2\right)\left(4x-2\right)=0\)
\(=>\left[{}\begin{matrix}x-2=0\\4x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
3)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(x^2-4x+4=4\left(x^2-2x+1\right)\)
\(x^2-4x+4=4x^2-8x+4\)
\(x^2-4x+4-4x^2+8x-4=0\)
\(-3x^2+4x=0\)
\(x\left(-3x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\-3x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)