Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đã ntố lại thêm đk (y>0) bạn lấy đề ở sách nào vậy: port tên sách, tác giả lên để mọi nguoi biết tránh xa ra
Theo bài ra ta có: xy - yx là số chính phương.
=> xy - yx = 10x + y -10 - y - x = 9.( x - y ) = 32.( x - y ) là số chính phương.
=> x - y là số chính phương.
Và x > y > 0
=> x - y = 1 hoặc x - y = 4.
Các số có 2 chữ số có chữ số hàng chục hơn hàng đơn vị 1 đơn vị:
10 ; 21 ; 32 ; 43 ; 54 ; 65 ; 76 ; 87 ; 98.
=> số cần tìm là 43.
Các số có 2 chữ số có chữ số hàng chục hơn hàng đơn vị 4 đơn vị:
40 ; 51 ; 62 ; 73 ; 84 ; 95.
=> số cần tìm là 73.
Vậy ta tìm được các số thõa mãn: 43 ; 73.
ab - ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b)
ab - ba là số chính phương <=> 9(a - b) là số chính phương => a-b là số chính phương
Mà 0<a-b<9 => a-b = 1 hoặc 4
+a - b = 1 => ab thuộc {21;32;43;54;65;76;87;98}. Mà ab là số nguyên tố => ab = 43
+a - b = 4 => ab thuộc {51;62;73;84;95}. Mà ab là số nguyên tố => ab = 73
Kết luận: ab có 2 giá trị là 43 và 73
Do \(\overline{ab}-\overline{ba}\) là số chính phương nên \(\overline{ab}-\overline{ba}=n^2\left(n\in Z\right)\)
\(\Leftrightarrow\left(10a+b\right)-\left(10b+a\right)=n^2\Leftrightarrow9\left(a-b\right)=n^2\)
Do \(n^2;9\) là số chính phương nên \(a-b\) là số chính phương
Mà a;b là có số có 1 chứ số nên \(a-b\in\left\{1;4;9\right\}\)
Xét \(a-b=1\) thì \(\overline{ab}=\left\{98;87;76;65;54;43;32;21;10\right\}\) mà \(\overline{ab}\) là số NT nên \(\overline{ab}=43\)
Xét \(a-b=4\) thì \(\overline{ab}=\left\{95;84;73;62;51;40\right\}\) mà \(\overline{ab}\) là số nt nên \(\overline{ab}=73\)
Xét \(a-b=9\Rightarrow\overline{ab}=90\) loại
Vậy \(\overline{ab}=43;73\)