K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a) Tứ giác BCEF có \(\widehat{BEC}=\widehat{BFC}=90^0\left(gt\right)\)

\(\Rightarrow BCEF\)là tứ giác nội tiếp.

\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)

\(\Delta PBE\)và \(\Delta PFC\)có: \(\widehat{EPC}\)chung; \(\widehat{E_1}=\widehat{C_1}\)

\(\Rightarrow\Delta PBE\)\(\Delta PFC\)(g.g)

\(\Rightarrow\frac{PB}{PF}=\frac{PE}{PC}\Rightarrow PB.PC=PE.PF\)

Tứ giác BDHF có \(\widehat{BDH}=\widehat{BFH}=90^0\)(gt)

\(\widehat{BDH}+\widehat{BFH}=180^0\)

\(\Rightarrow\)BDHF là tứ giác nội tiếp.

\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)

Gọi J là trung điểm của AH. Dễ thấy \(\Delta HEF\)nội tiếp đường tròn \(\left(J;\frac{AH}{2}\right)\)

Tứ giác HEKF nội tiếp đường tròn (J)

\(\Rightarrow\widehat{F_1}=\widehat{HEK}\left(=180^0-\widehat{HFK}\right)\)

Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{B_1}=\widehat{HEK}\)

\(\Rightarrow KE//BC\left(đpcm\right)\)

b) Tứ giác BCEF nội tiếp\(\Rightarrow\widehat{B_1}=\widehat{HFE}\)

Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{DFE}=2\widehat{B_1}\)(1)

\(\Delta EBC\)vuông tại E, đường trung tuyến EI

\(\Rightarrow IB=IE=\frac{1}{2}BC\Rightarrow\Delta IBE\)cân tại I

\(\Rightarrow\widehat{I_1}=2\widehat{B_1}\)(t/c góc ngoài của tam giác)   (2)

Từ (1) và (2) suy ra \(\Rightarrow\widehat{I_1}=\widehat{DFE}\)

\(\Rightarrow DIEF\)là tứ giác nội tiếp.

Dễ chứng minh được \(\Delta PDF\)\(\Delta PEI\left(g.g\right)\)

\(\Rightarrow PD.PI=PE.PF\)

và \(\Delta PHE\)\(\Delta PFQ\left(g.g\right)\)

\(\Rightarrow PE.PF=PH.PQ\)

\(\Rightarrow PD.PI=PH.PQ\Rightarrow\frac{PD}{PQ}=\frac{PH}{PI}\)

\(\Rightarrow\Delta PDH\)\(\Delta PQI\)(c.g.c)\(\Rightarrow\widehat{PHD}=\widehat{PIQ}\)

Lại có \(\widehat{PHD}=\widehat{AHQ}=\widehat{AFQ}\)

\(\Rightarrow BIOF\)là tứ giác nội tiếp.

5 tháng 10 2019

\(A=\frac{\sqrt{2\left(x+1\right)}}{\sqrt{2}}+\frac{\sqrt{2\left(y+1\right)}}{\sqrt{2}}+\frac{\sqrt{2\left(z+1\right)}}{\sqrt{2}}\le\frac{x+y+z+9}{2\sqrt{2}}=3\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 12 2016

Phim gì mà hay vậy

16 tháng 12 2016

Sao bạn làm được vậy mà kể ra bạn cũng rảnh ghê ta .

28 tháng 2 2018

1994^10 =(....76)

A=1994^2005 =1994^5 . 1999^10.10

(...24)(...76) =24.76 =824

2 số cuối tận cũng A là: 24

1 tháng 3 2018

ngonhuminh : Tại sao 1994^2005 = 1994^5.1999^10.10 v bn?

18 tháng 12 2016

đây là giúp tôi giải toán cơ mà sao bạn đăng ảnh hoạt hình

ai đồng ý thì tink k nha

7 tháng 8 2017

\(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\times\dfrac{\left(1-x\right)^2}{2}\)\(\left(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\right)\)

\(=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\times\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left[\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\right]}{2}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left[\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)\right]}{2}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\times-2\sqrt{x}}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

~ ~ ~

\(-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow0\le x< 1\)

~ ~ ~

\(-\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=-x+\sqrt{x}\)

\(=\dfrac{1}{4}-\left(\sqrt{x}-\dfrac{1}{2}\right)^2\le0\)

Dấu "=" xảy ra khi x = 0