Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P\text{=}\dfrac{5x-9}{x-3}\text{=}\dfrac{5x-15+6}{x-3}\)
\(\Rightarrow P\text{=}\dfrac{5x-15}{x-3}+\dfrac{6}{x-3}\)
\(\Rightarrow P\text{=}\dfrac{5\left(x-3\right)}{x-3}+\dfrac{6}{x-3}\text{=}\dfrac{6}{x-3}+5\)
\(\Rightarrow P_{max}\Leftrightarrow x-3\text{=}1\Leftrightarrow x\text{=}4\)
\(\Rightarrow P_{max}\text{=}9\Leftrightarrow x\text{=}4\)
\(\Rightarrow P_{min}\Leftrightarrow x-3\text{=}-1\Leftrightarrow x\text{=}2\)
\(\Rightarrow P_{min}\text{=}-1\Leftrightarrow x\text{=}2\)
a: ĐKXĐ: x>5
b: \(P=\dfrac{x-2-3}{\sqrt{x-2}-\sqrt{3}}=\sqrt{x-2}+\sqrt{3}\)
c: \(\sqrt{x-2}+\sqrt{3}=3\sqrt{3}\)
\(\Leftrightarrow\sqrt{x-2}=2\sqrt{3}=\sqrt{12}\)
=>x-2=12
hay x=14
a) ĐKXĐ: x ≥ 2
b) Ta có:
\(P=\dfrac{x-5}{\sqrt{x-2}-\sqrt{3}}\\ =\dfrac{\left(x-5\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{x-2-3}\\ =\sqrt{x-2}+\sqrt{3}\)
Vậy P = \(\sqrt{x-2}+\sqrt{3}\) với x ≥ 2
c) Để P = \(\sqrt{27}\)
\(\\ \Leftrightarrow\sqrt{x-2}+\sqrt{3}=\sqrt{27}=3\sqrt{3}\\ \Leftrightarrow\sqrt{x-2}=2\sqrt{2}\\ \Leftrightarrow x-2=8\\ \Leftrightarrow x=10\left(TM\right)\)
Vậy x =10
d) Ta có: \(P=\sqrt{x-2}+\sqrt{3}\)
Vì x ≥ 2 nên \(\sqrt{x-2}\ge0\Leftrightarrow\sqrt{x-2}+\sqrt{3}\ge\sqrt{3}\)
hay P ≥ √3
Dấu '=' xảy ra ⇔ x = 2 (TM)
Vậy MinP = √3 ⇔ x = 2
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
ADBDT cô-si ta được
A lớn hơn hoặc bằng \(2\sqrt{\dfrac{16x^3y^3}{xy}}-\sqrt{xy}=8xy-\sqrt{xy}\)
Đặt \(\sqrt{xy}=t\)
A lớn hơn hoặc bằng 8t2-t=8(t2-2.\(\dfrac{1}{16}t+\dfrac{1}{16^2}-\dfrac{1}{16^2}\))
=8(t-\(\dfrac{1}{16}\))2-\(\dfrac{1}{32}\) lớn hơn hoặc bằng -\(\dfrac{1}{32}\)
min A =\(\dfrac{-1}{32}\) Dấu bằng xảy ra <=>t=\(\dfrac{1}{16}\)=>\(\sqrt{xy}=\dfrac{1}{16}=>xy=\dfrac{1}{16^2}\)(1)
và \(\dfrac{16x^3}{y}=\dfrac{y^3}{x}=>2x=y=>\dfrac{x}{y}=\dfrac{1}{2}\)=>x=\(\dfrac{y}{2}\) (2)
Thay (2) vào (1)
=>\(\dfrac{y^2}{2}=\dfrac{1}{16^2}=>y=\dfrac{\sqrt{2}}{16}\)=>x=\(\dfrac{\sqrt{2}}{32}\)
Lời giải:
Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)
\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)
\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)
Thực hiện tương tự với những biểu thức còn lại suy ra:
\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)
\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)
\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)
\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))
Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)
Dấu bằng xảy ra khi \(x=y=z\)
\(A=\dfrac{x^3-27}{x-3}+5x\)
\(=\dfrac{\left(x-3\right)\left(x^2+3x+9\right)}{x-3}+5x\)
\(=x^2+8x+9\)
\(=x^2+8x+16-7\)
\(=\left(x+4\right)^2-7\ge-7\)
Dấu " = " khi \(\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy \(MIN_A=-7\) khi x = -4