Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có VT = 36a + 12b = 12 . (3a + b)
Do 12 . (3a + b) \(⋮\)12 mà 24302 \(⋮̸\)12
=> VT = VP (vô lý)
Vậy không thể tồn tại hai số tự nhiên a và b mà 36a + 12b = 24302.
Tái bút: Do mình không giỏi toán nên chỉ có thể trình bày theo ý hiểu của mình, mong bạn thông cảm.
Giải thích các bước giải:
Vì 12a và 36b phải chia hết cho 12
=>Ta có : 12a chia hết cho 12
36b chia hết cho 12
Mà : 1234 chia hết cho 12
\(2\left(a+b\right)=ab\\ =>2a+2b=ab\\ =>ab-2a-2b=0\\ =>a\left(b-2\right)-2\left(b-2\right)=4\\ =>\left(b-2\right)\left(a-2\right)=4\)
Tự lập bảng
36x+12y=24302
<=>12(3x+y)=24302
<=>3x+y=\(\frac{12151}{6}\)
Do x,y là các sô tự nhiên => 3x+y là số tự nhiên mà \(\frac{12151}{6}\)là số hữu tỉ
=> Phương trình vô nghiệm
3a+3b=ab
=> ab-3a-3b=0
=> a(b-3)-3(b-3)=9
=>(b-3).(a-3)=9
lập bảng nhé ngọc
12a + 12 x 3b = 3211
12 ( a + 3b ) = 3211
\(\Rightarrow\)a + 3b = 3211 : 12
a , b thuộc N \(\Rightarrow\)a + 3b là STN nhưng 3211 : 12 không phải STN nên hư cấu
Vì 12a và 36b đều chia hết cho 4
=> 12a + 36b chia hết cho 4(1)
Mà theo đề bài, ta có
12a + 36b = 3211 ko chia hết cho 4(2)
Từ (1) và (2) => mâu thuẫn => ko tồn tại 2 số a và b thỏa mãn đề bài
\(36a+12b=24302\)
\(2.12a+2.6b=24302\)
\(2.\left(12a+6b\right)=24302\)
\(2.\left(12a+6b\right)=12151.2\)
\(\Rightarrow12a+6b=12151\)
vậy ab là gì