Tìm đa thức bậc hai biết f(x) - f(x-1) = x. Từ đó áp dụng tính tổng S = 1+2+3+ .......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn sear gô gle ấy

Có đó 

k nha!

28 tháng 1 2016

ko

28 tháng 1 2016

kho

10 tháng 5 2016

giúp mk đi!

10 tháng 5 2016

the ma van duoc k

28 tháng 2 2020

ừmmmmmmm......bài cô giảng rùi đó ông tướng ạ!!!! giở lại xem đi.......

Giả sử f(x)=ax^2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)−f(x−1)=x

⇒2ax+a+b=x

Do đó a+b=0 và a=1/2 từ đó ta suy ra a=1/2;b=−1/2

Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)

f(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1

f(2)−f(1)=2

....

f(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=n(n−1)2

29 tháng 2 2020

Ta có:\(f\left(x\right)-f\left(x-1\right)=x\)

Gọi đa thức bậc hai có dạng \(f\left(x\right)=ax^2+bx+c\)

\(\implies\)\(f\left(x-1\right)=a.\left(x-1\right)^2+b.\left(x-1\right)+c\)

\(\implies\) \(f\left(x\right)-f\left(x-1\right)=\left(ax^2+bx+c\right)-\left(a.\left(x-1\right)^2+b.\left(x-1\right)+c\right)\)

                                             \(=\left(ax^2+bx+c\right)-\left(ax^2-2ax+a+bx-b+c\right)\)

                                             \(=ax^2+bx+c-ax^2+2ax-a-bx+b-c\)

                                             \(=2ax-a+b\)

Theo bài ra ta có:\(f\left(x\right)-f\left(x-1\right)=x\)

                \(\implies\)  \(2ax+\left(-a+b\right)=x\)

Đồng nhất các hệ số ta được :\(\hept{\begin{cases}2a=1\\-a+b=0\end{cases}}\) \(\implies\)  \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức bậc hai có dạng :

        \(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c\)

\(\implies\) \(f\left(x\right)=\frac{x.\left(x+1\right)}{2}+c\)

Vận dụng: \(S=1+2+3+...+n\)

 Ta có :\(f\left(1\right)-f\left(0\right)=1\)

           \(f\left(2\right)-f\left(1\right)=2\)

          \(f\left(3\right)-f\left(2\right)=3\)

                 .......................

        \(f\left(n\right)-f\left(n-1\right)=n\)

\(\implies\) \(f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+f\left(3\right)-f\left(2\right)+....+f\left(n\right)-f\left(n-1\right)=1+2+3+...+n\)

\(\implies\) \(f\left(n\right)-f\left(0\right)=S\)

\(\implies\) \(\left(\frac{n.\left(n+1\right)}{2}+c\right)-\left(\frac{0.\left(0+1\right)}{2}+c\right)=S\)

\(\implies\) \(\frac{n.\left(n+1\right)}{2}+c-0-c=S\)

\(\implies\) \(S=\frac{n.\left(n+1\right)}{2}\)