K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{32}-\sqrt{27}=4\sqrt{2}-3\sqrt{3}\)

5 tháng 11 2016

\(a+b+c=0\Leftrightarrow a+b=-c\) thay vào : 

\(a^3+b^3+c\left(a^2+b^2\right)-abc=\left(a+b\right)^3-3ab\left(a+b\right)+c\left[\left(a+b\right)^2-2ab\right]-abc\)

\(=-c^3-3ab.\left(-c\right)+c\left[c^2-2ab\right]-abc\)

\(=-c^3+3abc+c^3-2abc-abc=0\)

29 tháng 5 2020

hello

14 tháng 6 2017

a) \(\sqrt{2-\sqrt{3}}=\frac{\sqrt{2}\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{2}\)b) Tương tự câu a) nhân \(\sqrt{2}\)vào.......\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}=\frac{\sqrt{10}+\sqrt{2}}{2}\)

c) \(\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=\sqrt{5}-1\)

d) \(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2}=\sqrt{5}+2\)

P/s: Những chỗ khi khai căn do OnlineMath k có dấu trị tuyệt đối nên mình k nhập đc. Nhưng các biểu thức đó tất cả đều dương nên k cần đổi dấu. Mong các bạn thông cảm nhé!

14 tháng 6 2017

thanks bn nhiều!!!

17 tháng 6 2016

điều kiện a> 0 

\(D=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1..\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a-\sqrt{a}+1\right)}-\left(2\sqrt{a}+1\right)+1\)

\(\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}.\)

b,  D = 2 => \(a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)

                                                     \(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)=0\Leftrightarrow\sqrt{a}-1=0\)( vì a > 0 nên \(\sqrt{a}+1>0\))

                                                        \(\Leftrightarrow a=1\)

c, a > 1 =>  \(\sqrt{a}>1\Rightarrow\sqrt{a}-1>0\)

              \(\Rightarrow D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\)

            Vậy D = | D |  > 0 

d, \(D=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)với mọi a > 0 

   vậy Dmin = - 1/4 khi a = 1/4

                                                       

17 tháng 6 2016

xin lỗi phàn b anh làm sai. Sửa lại như sau :

b, D = 2 => \(a-\sqrt{a}=2\Rightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0.\)

                                                                                                    \(\Leftrightarrow\sqrt{a}-2=0\)( vì a > 0, nên căn a + 1 > 0 )

                                                                                                     \(\Leftrightarrow a=4\)

29 tháng 9 2017

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}+1\)

\(P=\frac{\sqrt{x}+1+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{2}{\sqrt{x}-1}\)

vay \(P=\frac{2}{\sqrt{x}-1}\)

b)  \(x=4-2\sqrt{3}\)

\(x=\left(\sqrt{3}\right)^2-2\sqrt{3}+1\)

\(x=\left(\sqrt{3}-1\right)^2\)

thay \(x\) vao ta co:

\(P=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(P=\left|\sqrt{3}-1\right|\)

\(P=\sqrt{3}-1\) ( vi \(\sqrt{3}-1>0\))

vay \(P=\sqrt{3}-1\)

5 tháng 7 2016

Giúp m với

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(abc+c^2a+b^2c+bc^2+a^2b+ca^2+ab^2+abc\right)\)

\(=a^3+b^3+c^3+3\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

Lại có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a-b+b-c+c-a\right)^2\)

\(-2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]\)

\(=-2\left(ab-ca-b^2+bc+bc-ab-c^2+ca+ca-bc-a^2+ab\right)\)

\(=2\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(P=\frac{\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)}{2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)}\)

\(=\frac{\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}{2\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}=\frac{a+b+c}{2}\)