Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) => (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
đúng
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản