Cho tam giác ABC vuông tại A ( AB < AC), chung tuyến AM. E v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

a)ta có: góc A=góc E= góc F=90 độ

=> tứ giác AEMF là hcn

20 tháng 12 2020

b)vì tg abc vuông tại a=> AM=\(\dfrac{1}{2}BC\) =BM=MC

xét tg AMF và tg CMF có: 

góc F=90 độ

AM=MC

MF:chung

=> tg AMF= tg CMF(ch-cgv)

=>AF=FC=\(\dfrac{1}{2}AC=3\)cm

xét tg BME và tg AME có:

góc E=90 độ

EM: chung

AM=BM

=>tg BME=tg AME(ch-cgv)

=>AE=BE=\(\dfrac{1}{2}AB=2cm\)

diện tích hcn là:

S=AE.AF=2.3=6\(cm^2\)

 

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(AE=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

AF=AC/2=3cm

Do đó: \(S_{AEMF}=2\cdot3=6\left(cm^2\right)\)

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

nên AMCK là hình bình hành

mà MA=MC

nên AMCK là hình thoi

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(AE=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

AF=AC/2=3cm

Do đó: \(S_{AEMF}=2\cdot3=6\left(cm^2\right)\)

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

nên AMCK là hình bình hành

mà MA=MC

nên AMCK là hình thoi

a: BC=10cm

AM=5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCD có

F là trung điểm chung của AC và MD

nên AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

31 tháng 10 2016

mình chịu rồi

tk nhé@@@@@@@@@@@

xin đó

bye

1 tháng 1 2018

Tôi ko biết đâu nha

31 tháng 10 2016

giúp hộ nha cần gấp lắm

31 tháng 10 2016

A) theo định lý py ta go ta có

AB^2 + AC^2 =BC^2

=>BC^2 = 6^2+ 8^2 = 100 => BC = 10 (cm)

ta lại có đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền

=> AM = 10 : 2= 5 (cm)

B) ta có

AB // ME

AB vuông góc với AC

=> me vuông góc với ac (1)

AC// ME và ac vuông góc với ab => me vuông góc với ab (2)

AB vuông góc vs AC => AF vuông góc với ae(3)

từ (1), (2) và (3) suy ra aemf có 3 góc vuông =>aemf là hình chứ nhật

c) điều kiện

- có AF = FM

hoặc AM =EF

hay AM , EF là phân giác của góc vuông

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .