Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Vậy ......................
~ Học tốt ~
Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)
Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)
\(\Rightarrow A< B\)
Ta có:
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)
\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)
\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)
\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)
Ta lại có:
\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)
\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)
\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)
Do \(2019^{2021}+1>2019^{2019}+1\)
\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)
\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)
\(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)
.....................................
\(1=1\)
\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
Ta có :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)
\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
Lời giải:
Ta có:
\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)
\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)
$\Rightarrow B+1>A+1$
$\Rightarrow B>A$