Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(\frac{2^{2014}+2}{2^{2014+1}}=1+\frac{1}{2^{2014}+1}\)
Có\(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
=> \(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
Ủng hộ mk nha
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
\(Vì\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
\(=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
Ủng hộ mk nha ^_-
A=2^0+2^1+2^2+...+2^2014
2A=2^1+2^2+2^3+...+2^2015
2A-A=(2^1+2^2+2^3+...+2^2015)-(2^0+2^1+2^2+...+2^2014)
A=2^2015-2^0=2^2015-1
Vì 2^2015-1>2^2014-1 =>A>B.
cùng nhân tử với 2014>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
2^2014+1/2^2014>2^2014+2/2^2014+1
2^2014+1/2^2014>2^2014+2/2^2014+1