Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
11 < 10001000
22 < 10001000
33 < 10001000
....
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
=> B < 1000.10001000 = 10001001 = A
Vậy B < A
Ta có:
11 < 10001000
22 < 10001000
............
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
<=> B < 1000.10001000 = 10001001 = A
Vậy.................
hok tốt
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)