Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thu gọn và sắp xếp các hạng tử của đa thức A(x) = x5 + x3 - x2 + 2x3 -525
A. A(x) = x5 + x3 - x2 -1 B. A(x) = x5 - x3 + x2 -1
C. A(x) = x5 + 3x3 - x2 D. A(x) = x5 + 3x3 - x2 -1
a) 3x(x + 2) + 4x(-2x + 3) + (2x - 3)(3x + 1)
= 3x2 + 6x - 8x2 + 12x + 6x2 + 2x - 9x - 3
= (3x2 - 8x2 + 6x2) + (6x + 12x + 2x - 9x) - 3
= x3 + 11x - 3
b) (x2 + 1)(x2 - x + 2) - (x2 - 1)(x2 + x - 2)
= x4 - x3 + 3x2 - x + 2 - x4 - x3 + 3x2 + x - 2
= (x4 - x4) + (-x3 - x3) + (3x2 + 3x2) + (-x + x) + (2 - 2)
= -2x3 + 6x2
c) (-2x - 3)2 + (3x + 2)2 + (4x + 1)
= 4x2 + 12x + 9 + 9x2 + 12x + 4 + 4x + 1
= (4x2 + 9x2) + (12x + 12x + 4x) + (9 + 4 + 1)
= 13x2 + 28x + 14
a , x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7)
= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7
= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7)
= 3
Vậy GTBT ko phụ thuộc vào biến
b, (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x
= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x
= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5)
= -6
Vậy GTBT ko phụ thuộc vào biến
a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )
= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7
= 3
Vậy biểu thức không phụ thuộc vào biến.
b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x
= 2x3 -4x2 +x - 1 - 5 + x2 - 2x3 +3x2 - x
= -1 - 5 = -6
Vậy biểu thức không phụ thuộc vào biến x
a) ta có: \(A_{\left(x\right)}=2x.\left(x+3\right)-3x^2.\left(x+2\right)+x.\left(3x^2+4x-6\right)\)
\(A_{\left(x\right)}=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x\)
\(A_{\left(x\right)}=\left(2x^2-6x^2+4x^2\right)+\left(6x-6x\right)+\left(3x^3-3x^3\right)\)
\(A_{\left(x\right)}=0\)
=> A(x) không phụ thuộc vào giá trị của x
phần b bn lm tương tự nha!
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5