Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn bấm máy tính rồi phân tích = hằng đẳng thức ý
b. Đặt x^2 + 4x + 10 = t
suy ra :
= t^2 - 7(t+1) + 7
Rồi bạn cứ thế mà giải , khi ra đc t = t(t-7) thì bạn :
thay t = x^2 + 4x + 10 , ta có :
x = x^2 + 4x + 10 hoặc x = ( x^2 + 4x + 10 - 7 ) = ( x + 1 )(x + 3)
sau đos vậy là ok !! :3
A=(x2+4x+10)2 - 7(x2 +4x+11)+7
A=(x2+4x+10)2 -7(x2 +4x+11-7)
A=(x2+4x+10)2 -7(x2 +4x+10)
A=(x2 +4x+10)(x2+4x+10-7)
A=(x2 +4x+10)(x2+4x+3)
a) 4xn+2 + 8xn = 4xn( x2 + 2 )
b) ( 4x - 8 )( x2 + 6 ) - ( x - 2 )( x + 7 ) - 10 + 5x
= 4( x - 2 )( x2 + 6 ) - ( x - 2 )( x + 7 ) + 5( x - 2 )
= ( x - 2 )[ 4( x2 + 6 ) - ( x + 7 ) + 5 ]
= ( x - 2 )( 4x2 + 24 - x - 7 + 5 )
= ( x - 2 )( 4x2 - x + 22)
\(A=\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1-9\)
\(=\left(x^2+3x-1\right)^2-9\)
\(=\left(x^2+3x-1-3\right)\left(x^2+3x-1+3\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left[x^2+4x-x-4\right]\left[x^2+2x+x+2\right]\)
\(=\left[x\left(x+4\right)-\left(x+4\right)\right]\left[x\left(x+2\right)+x+2\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
\(B=\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)
Đặt \(x^2+4x+10=a\) , ta có :
\(a^2-7\left(a+1\right)+7\)
\(=a^2-7a-7+7\)
\(=a^2-7a\)
\(=a\left(a-7\right)\)
\(=\left(x^2+4x+10\right)\left(x^2+4x+10-7\right)\)
\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)
\(=\left(x^2+4x+10\right)\left[x\left(x+3\right)+x+3\right]\)
\(=\left(x^2+4x+10\right)\left(x+1\right)\left(x+3\right)\)
\(A=\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)
\(\Leftrightarrow A=\left(x^2+3x\right)-2\left(x^2+3x\right)+1-3^2\)
\(\Leftrightarrow A=\left(x^2+3x-1\right)^2-3^2\)
\(\Leftrightarrow A=\left(x^2+3x-1-3\right)\left(x^2+3x-1+3\right)\)
\(\Leftrightarrow A=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow A=\left(x^2+4x-x-4\right)\left(x^2+x+2x+2\right)\)
\(\Leftrightarrow A=\left[\left(x^2-x\right)+\left(4x-4\right)\right].\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)
\(\Leftrightarrow A=\left[x\left(x-1\right)+4\left(x-1\right)\right].\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(\Leftrightarrow A=\left(x+4\right)\left(x-1\right)\left(x+2\right)\left(x+1\right)\)
Vậy .............................................................
\(B=\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)
Đặt \(x^2+4x+10=y\) , Ta có:
\(y^2-7\left(y+1\right)+7\)
\(=y^2-7y-7+7\)
\(=y^2-7y\)
\(=y\left(y-7\right)\)
Thay \(y=x^2+4x+10\), ta có:
\(\left(x^2+4x+10\right).\left(x^2+4x+10-7\right)\)
\(=\left(x^2+4x+10\right).\left(x^2+4x+3\right)\)
\(=\left(x^2+4x+10\right).\left(x^2+3x+x+3\right)\)
\(=\left(x^2+4x+10\right).\left[\left(x^2+x\right)+\left(3x+3\right)\right]\)
\(=\left(x^2+4x+10\right).\left[x\left(x+1\right)+3\left(x+1\right)\right]\)
\(=\left(x^2+4x+10\right)\left(x+3\right)\left(x+1\right)\)
Vậy ................................................................
Chúc bn hok tốt!!!
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
(x^2-4x)^2 + (x-2)^2-10
{x^2-(2x)^2}+(x-2)-5^2
{x\(^2\)- (2x)\(^2\)} {x\(^2\)+ (2x)\(^2\)}+{(x-2) - 5\(^2\)} {(x-2)+5\(^2\)}
đén đây bn tự lm típ
(x+2)2 .75