\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Ta có : \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)

=> \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1989}{1991}\)

=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1989}{3982}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1989}{3982}\)

=> \(\frac{1}{x+1}=\frac{1}{1991}\)

=> x + 1 = 1991

=> x = 1990

Vậy x = 1990

27 tháng 9 2020

\(2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\) 

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{1990}{1991}\) 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1990}{1991}\) 

\(1-\frac{1}{x+1}=\frac{1990}{1991}\) 

\(\frac{1}{x+1}=1-\frac{1990}{1991}\) 

\(\frac{1}{x+1}=\frac{1}{1991}\) 

\(x+1=1991\) 

\(x=1990\)  

12 tháng 1 2016

kfckfckfc ngon ngonngon

12 tháng 1 2016

tich mik minh tich lai

 

29 tháng 11 2016

a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)

\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)

\(\Rightarrow x+3=-3\)

\(\Rightarrow x=-6\)

b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)

\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)

\(\Rightarrow2x+2=-2\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)

\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

29 tháng 11 2016

d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)

\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)

\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)

\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)

\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0

khỏi chép lại đề ha

  • 2 - 4x - 5x + \(\frac{3}{2}\)= \(\frac{7}{4}\)

          \(\frac{7}{2}\)- 9x = \(\frac{7}{4}\)

           -9x = \(\frac{7}{2}-\frac{7}{4}\)

           -9x = \(\frac{7}{4}\)

            x = \(\frac{7}{4}:\left(-9\right)\)

            x = \(\frac{-7}{36}\)

  • 3 - 2x - \(\frac{1}{3}=7x-\frac{1}{4}\)

          -2x - 7x = \(\frac{-1}{4}-3+\frac{1}{3}\)

         -9x = \(\frac{-35}{12}\)

          x = \(\frac{-35}{12}:\left(-9\right)\)

          x = \(\frac{35}{108}\)

  • \(\frac{-15}{2}\)+ \(\frac{1}{4}\)+ 4x -2 = 1

            4x = 1 + \(\frac{15}{2}-\frac{1}{4}+2\)

            4x = \(\frac{41}{4}\)

            x = \(\frac{41}{4}:4\)

            x = \(\frac{41}{16}\)

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145

14 tháng 10 2016

e)

=> (x-2) . (x+7) = ( x-1 ) . ( x +4)

=> x2 +7x - 2x -14 = x2 - x + 4x - 4

x2 + 5x - 14 = x2 + 3x - 4

=> 5x - 14  = 3x - 4

=> 5x  - 3x = 14-4

=> 2x         = 10 => x = 10 : 2 => x = 5

c)

=>( x-1) . 7 = ( x + 5 ) . 6

=> 7x - 7 = 6x + 30

=> 7x - 6x=  30 + 7

=> x         = 37

13 tháng 10 2016

a,x=\(\frac{5}{2}\)

b,x=\(\frac{13}{176}\)

c,x=37

d, x=\(\frac{12}{5}\)

e, x=5

6 tháng 2 2020

\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)

\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)

\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

6 tháng 2 2020

\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)

\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)

\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)

\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)

\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)